Skip to main content
Log in

Effect of the Type of the Cobalt-Containing Component of a Composite Catalyst on the One-Stage Synthesis of Liquid Hydrocarbons from СО and Н2

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The effect of the type of the cobalt-containing component (Со-Al2O3/SiO2, Co-Re/Al2O3, and Co-Re/TiO2) of a composite catalyst on the combined synthesis and hydroconversion of hydrocarbons by the Fischer–Tropsch process are investigated. The catalytic properties of catalyst samples are studied in a flow reactor with a fixed catalyst layer at 2 MPa and GHSV of 1000 h–1 within a the temperature range of 240–280°С for 40–90 h of continuous operation. The highest values of output and selectivity to C5+ hydrocarbons are obtained for composite catalyst Со-Al2O3/SiO2(35%)/ZSM-5(30%)/Al2O3(30%) at a temperature of 240°C and are 106 kg/(\({\text{m}}_{{{\text{cat}}}}^{3}\) h) and 67.1%, respectively. It is shown that using Co-Re/Al2O3 instead of Со-Al2O3/SiO2 catalyst produces comparable values of catalytic activity, but considerably fewer unsaturated hydrocarbons are found in the products of synthesis. Using Co-Re/TiO2 catalyst and raising the temperature (to 280°С) shifts the molecular weight distribution of the products of synthesis toward the formation of a gasoline fraction. It is found that the rate of catalyst deactivation grows in the order Со-Al2O3/SiO2 > Co-Re/Al2O3 > Co-Re/TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Ail, S.S. and Dasappa, S., Renewable Sustainable Energy Rev., 2016, vol. 58, pp. 267–286.

    Article  CAS  Google Scholar 

  2. Yakovenko, R.E., Narochnyi, G.B., Savost’yanov, A.P., and Kirsanov, V.A., Chem. Pet. Eng., 2015, vol. 51, nos. 3–4, pp. 159–163.

  3. Wood, D.A., Nwaoha, C., and Towler, B.F., J. Nat. Gas Sci. Eng., 2012, vol. 9, pp. 196–208.

    Article  CAS  Google Scholar 

  4. Wang, Y., Zhao, W., Li, Z., Wang, H., Wu, J., Li, M., Hu, Z., Wang, Y., Huang, J., and Zhao, Y., J. Porous Mater., 2015, vol. 22, no. 2, pp. 339–345.

    Article  CAS  Google Scholar 

  5. Savost’yanov, A.P., Yakovenko, R.E., Narochnyi, G.B., and Lapidus, A.L., Solid Fuel Chem., 2015, vol. 49, no. 6, pp. 356–359.

    Article  Google Scholar 

  6. Savost’yanov, A.P., Narochnyi, G.B., Yakovenko, R.E., Saliev, A.N., Sulima, S.I., Zubkov, I.N., Nekroenko, S.V., and Mitchenko, S.A., Pet. Chem., 2017, vol. 57, no. 12, pp. 1186–1189.

    Article  Google Scholar 

  7. Eggenhuisen, T.M., den Breejen, J.P., Verdoes, D., de Jongh, P.E., and de Jong, K.P., J. Am. Chem. Soc., vol. 132, no. 51, pp. 18318–18325.

  8. Eschemann, T.O., Oenema, J., and de Jong, K.P., Catal. Today, 2016, vol. 261, pp. 60–66.

    Article  CAS  Google Scholar 

  9. Lapidus, A.L., Pavlova, V.A., Chin, N.K., Eliseev, O.L., Gushchin, V.V., and Davydov, P.E., Pet. Chem., 2009, vol. 49, no. 4, pp. 301–305.

    Article  Google Scholar 

  10. Todic, B., Nowicki, L., Nikacevic, N., and Bukur, D.B., Catal. Today, 2015, vol. 261, pp. 28–39.

    Article  Google Scholar 

  11. Zhang, Q., Deng, W., and Wang, Y., J. Energy Chem., 2013, vol. 22, no. 1, pp. 27–38.

    Article  Google Scholar 

  12. EN (European Standard) 228:2008 (E): Automotive Fuels. Unleaded Petrol. Requirements and Test Methods, 2008.

  13. GOST (State Standard) 305-2013: Diesel fuel.Specifications, 2013.

  14. Kibby, C., Jothimurugesan, K., Das, T., Lacheen, H.S., Rea, T., and Saxton. R.J., Catal. Today, 2013, vol. 215, pp. 131–141.

    Article  CAS  Google Scholar 

  15. Wei, L., Zhao, Y., Zhang, Y., Liu, C., Hong, J., Xiao, Q., Xiong, H., and Li, J., ChemCatChem, 2017, vol. 9, no. 20, pp. 3895–3903.

    Article  CAS  Google Scholar 

  16. Deldari, H., Appl. Catal., A, 2005, vol. 293, pp. 1–10.

  17. Yao, M., Yao, N., Liu, B., Li. S., Xu, L., and Li, X., Catal. Sci. Technol., 2015, vol. 5, no. 5, pp. 2821–2828.

    Article  CAS  Google Scholar 

  18. Kang, J., Wang, X., Peng, X., Yang, Y., Cheng, K., Zhang, Q., and Wang, Y., Ind. Eng. Chem. Res., 2016, vol. 55, no. 51, pp. 13008–13019.

    Article  CAS  Google Scholar 

  19. Wang, Y., Jiang, Y., Huang, J., Wang, H., Li, Z., and Wu, J., RSC Adv., 2016, vol. 6, no. 109, pp. 107498–107506.

    Article  CAS  Google Scholar 

  20. Sineva, L.V., Asalieva, E.Yu., and Mordkovich, V.Z., Russ. Chem. Rev., 2015, vol. 84, no. 11, pp. 1176–1189.

    Article  CAS  Google Scholar 

  21. Sartipi, S., Alberts, M., Meijerink, M.J., Keller, T.C., Pérez-Ramírez, J., Gascon, J., and Kapteijn, F., ChemSusChem, 2013, vol. 6, no. 9, pp. 1646–1650.

    Article  CAS  Google Scholar 

  22. Pereira, A.L.C., González-Carballo, J.M, Pérez-Alonso, F.J., Rojas, S., Fierro, J.L.G., and do Carmo Rangel, M., Top. Catal., 2011, vol. 54, nos. 1–4, pp. 179–189.

  23. Kang, S.-H., Bae, J.W., Sai Prasad, P. S., and Jun, K.-W., Catal. Lett., 2008, vol. 125, pp. 246–270.

    Article  Google Scholar 

  24. Freitez, A., Pabst, K., Kraushaar-Czarnetzki, B., and Schaub, G., Ind. Eng. Chem. Res., 2011, vol. 50, no. 24, pp. 13732–13741.

    Article  CAS  Google Scholar 

  25. Yang, G., Xing, C., Hirohama, W., Jin, Y., Zeng, C., Suehiro, Y., Wang, T., Yoneyama, Y., and Tsubaki, N., Catal. Today, 2013, vol. 215, pp. 29–35.

    Article  CAS  Google Scholar 

  26. Alkhimov, S.A., Grigor’ev, D.A., and Mikhailov, M.N., Russ. Chem. Bull., 2013, vol. 62, no. 5, pp. 1176–1182.

    Article  CAS  Google Scholar 

  27. Alkhimov, S.A., Grigor’ev, D.A., and Mikhailov, M.N., Katal. Prom-sti, 2013, no. 4, pp. 31–41.

  28. Sineva, L.V., Mordkovich, V.Z., and Khatkova, E.Yu., Mendeleev Commun., 2013, vol. 23, no. 1, pp. 44–45.

    Article  CAS  Google Scholar 

  29. Narochnyi, G.B., Yakovenko, R.E., Savost’yanov, A.P., and Bakun, V.G., Catal. Ind., 2016, vol. 8, no. 2, pp. 139–144.

    Article  Google Scholar 

  30. Savost’yanov, A.P., Yakovenko, R.E., Sulima, S.I., Bakun, V.G., Narochnyi, G.B., Chernyshev, V.M., and Mitchenko, S.A., Catal. Today, 2017, vol. 279, part 1, pp. 107–114.

    Article  Google Scholar 

  31. International Center for Diffraction Data (ICDD). PDF-2 Release 2012. www.icdd.com. Cited October 6, 2019.

  32. Young, R.A., The Rietveld Method, Oxford: Oxford University Press, 1995.

    Google Scholar 

  33. Schanke, D., Vada, S., Blekkan, E.A., Hilmen, A.M., Hoff, A., and Holmen, A., J. Catal., 1995, vol. 156, no. 1, pp. 85–95.

    Article  CAS  Google Scholar 

  34. Xu, D., Li, W., Duan, H., Ge, Q., and Xu, H., Catal. Lett., 2005, vol. 102, nos. 3–4, pp. 229–235.

  35. Cotton, F. A. and Wilkinson, G., Basic Inorganic Chemistry, New York: Wiley, 1976.

    Google Scholar 

  36. Bulavchenko, O.A., Cherepanova, S.V., Malakhov, V.V., Dovlitova, L.C., Ishchenko, A.V., and Tsybulya, S.V., Kinet. Catal., 2009, vol. 50, no. 2, pp. 192–198.

    Article  CAS  Google Scholar 

  37. Conte, M., Xu, B., Davies, T.E., Bartley, J.K., Carley, A.F., Taylor, S.H., Khalid, K., and Hutchings, G.J., Microporous Mesoporous Mater., 2012, vol. 164, pp. 207–213.

    Article  CAS  Google Scholar 

  38. Wilson, S.J., J. Solid State Chem., 1979, vol. 30, no. 2, pp. 247–255.

    Article  CAS  Google Scholar 

  39. Savost’yanov, A.P., Yakovenko, R.E., Narochnyi, G.B., Bakun, V.G., Sulima, S.I., Yakuba, E.S., Sulim, S.I., Yakuba, E.S., and Mitchenko, S.A., Kinet. Catal., 2017, vol. 58, no. 1, pp. 81–91.

    Article  Google Scholar 

  40. Pardo-Tarifa, F., Cabrera, S., Sanchez-Dominguez, M., and Boutonnet, M., Int. J. Hydrogen Energy, 2017, vol. 42, no. 15, pp. 9754–9765.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed on equipment belonging to the Nanotechnologies shared resource center of Platov South Russian State Polytechnic University.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-33-00946/18.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. E. Yakovenko, I. N. Zubkov, G. B. Narochnyi, S. V. Nekroenko or A. P. Savost’yanov.

Additional information

Translated by D. Kharitonov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovenko, R.E., Zubkov, I.N., Narochnyi, G.B. et al. Effect of the Type of the Cobalt-Containing Component of a Composite Catalyst on the One-Stage Synthesis of Liquid Hydrocarbons from СО and Н2. Catal. Ind. 11, 286–294 (2019). https://doi.org/10.1134/S2070050419040093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050419040093

Keywords:

Navigation