Catalysis in Industry

, Volume 11, Issue 4, pp 323–334 | Cite as

Morphological, Structural, and Catalytic Properties of Pd–CeO2/Al2O3 Compositions and Thereof Coatings in the Oxidation of Methane

  • N. V. ShikinaEmail author
  • O. Yu. PodyachevaEmail author
  • A. V. IshchenkoEmail author
  • S. R. KhairulinEmail author
  • T. B. TkachenkoEmail author
  • A. A. MorozEmail author
  • Z. R. IsmagilovEmail author


The morphological and structural properties of Pd–CeO2/Al2O3 catalytic compositions annealed at 100, 500, and 1000°С are studied, along with thereof coatings deposited on metallic foil via cold gas dynamic spraying. The influence of the preparation technique of the initial catalytic composition and introducing active component into a coating on their phase states, particle sizes, and activitites is elucidated. It is shown that introducing active components via impregnation into preliminarily sprayed alumina layer ensures the uniform distribution of Pd and Ce in the support profile, the formation of nanosized PdO particles, and the phase of interaction between the components of the catalyst and support. The impregnated catalyst shows the highest activity in the reaction of methane oxidation. The technique for preparing coatings has no limitations when scaled up and can find application in manufacturing full-size catalysts on metallic foil for different types of power engineering devices.


catalytic coating cold gas dynamic spraying methane oxidation morphology 



The authors thank V.F. Kosarev and V.V. Lavrushin at the Institute of Theoretical and Applied Mechanics SB RAS for performing cold gas spraying experiments.


This work was supported by the Russian Foundation for Basic Research, project no. 18-43-54 0015.


  1. 1.
    Parmon, V.N., Ismagilov, Z.R., Favorskii, O.N., Belokon’, A.A., and Zakharov, V.M., Vestn. Ross. Akad. Nauk, 2007, vol. 77, no. 9, pp. 819–830.Google Scholar
  2. 2.
    Chen, J., Arandiyan, H., Gao, X., and Li, J., Catal. Surv. Asia, 2015, vol. 19, no. 3, pp. 140–171.CrossRefGoogle Scholar
  3. 3.
    Schwartz, W.R., Ciuparu, D., and Pfefferle, L.D., J. Phys. Chem. C, 2012, vol. 116, no. 15, pp. 8587–8593.CrossRefGoogle Scholar
  4. 4.
    Banerjee, A.C., McGuire, J.M., Lawnick, O., and Bozack, M.J., Catalysts, 2018, vol. 8, no. 7, p. 266.CrossRefGoogle Scholar
  5. 5.
    Dalla Betta, R.A. and Rostrup-Nielsen, T., Catal. Today, 1999, vol. 47, nos. 1–4, pp. 369–375.Google Scholar
  6. 6.
    Choi, J.-S. and Kočí, P., Catalysts, 2016, vol. 6, no. 10, p. 155.CrossRefGoogle Scholar
  7. 7.
    Heck, R.M., Farrauto, R.J., and Gulati, S.T., Catalytic Air Pollution Control. Commercial Technology, Hoboken, NJ: Wiley, 2009.CrossRefGoogle Scholar
  8. 8.
    Ciuparu, D., Lyubovsky, M.R., Altman, E., Pfefferle, L.D., and Datye, A., Catal. Rev., 2003, vol. 44, no. 4, pp. 593–649.CrossRefGoogle Scholar
  9. 9.
    Vatcha, S.R., Energy Convers. Manage., 1997, vol. 38, nos. 10–13, pp. 1327–1334.Google Scholar
  10. 10.
    Pfefferle, W.C., J. Energy, 1978, vol. 2, no. 3, pp. 142–146.CrossRefGoogle Scholar
  11. 11.
    Ismagilov, Z.R., Shikina, N.V., Yashnik, S.A., Zagoruiko, A.N., Kerzhentsev, M.A., Ushakov, V.A., Sazonov, V.A., Parmon, V.N., Zakharov, V.M., Braynin, B.I., and Favorskii, O.N., Catal. Today, 2010, vol. 155, nos. 1–2, pp. 35–44.Google Scholar
  12. 12.
    Kuper, W.J., Blaauw, M., van der Berg, F., and Graaf, G.H., Catal. Today, 1999, vol. 47, nos. 1–4, pp. 377–389.Google Scholar
  13. 13.
    Ismagilov, Z.R., React. Kinet. Catal. Lett., 1997, vol. 60, no. 2, pp. 215–218.CrossRefGoogle Scholar
  14. 14.
    Isupova, L.A., Sadykov, V.A., Tikhov, S.F., Kimkhai, O.N., Kovalenko, O.N., Kustova, G.N., Ovsyannikova, I.A., Dovbii, Z.A., Kryukova, G.N., Rozovskii, A.Ya., Tretyakov, V.F., and Lunin, V.V., Catal. Today, 1996, vol. 27, nos. 1–2, pp. 249–256.Google Scholar
  15. 15.
    Matsumoto, S., Catal. Today, 2004, vol. 90, nos. 3–4, pp. 183–190.Google Scholar
  16. 16.
    Ismagilov, Z.R., Yashnik, S.A., Matveev, A.A., Koptyug, I.V., and Moulijn, J.A., Catal. Today, 2005, vol. 105, nos. 3–4, pp. 484–491.Google Scholar
  17. 17.
    Yashnik, S.A., Andrievskaya, I.P., Pashke, O.V., Ismagilov, Z.R., and Mulyain, Ya.A., Katal. Prom-sti, 2007, no. 1, pp. 35–46.Google Scholar
  18. 18.
    Bal’zhinimaev, B.S., Suknev, A.P., Gulyaeva, Yu.K., and Kovalyov, E.V., Catal. Ind., 2015, vol. 7, no. 4, pp. 267–274.CrossRefGoogle Scholar
  19. 19.
    Pinaeva, L.G., Dovlitova, L.S., and Isupova, L.A., Kinet. Catal., 2017, vol. 58, no. 2, pp. 167–178.CrossRefGoogle Scholar
  20. 20.
    Qu, Z., Wang, Z., Quan, X., Wang, H., and Shu, Y., Chem. Eng. J., 2013, vol. 233, pp. 233–241.CrossRefGoogle Scholar
  21. 21.
    Zhu, A., Zhou, Y., Wang, Y., Zhu, Q., Liu, H., Zhang, Z., and Lu, H., J. Rare Earths, 2018, vol. 36, no. 12, pp. 1272–1277.CrossRefGoogle Scholar
  22. 22.
    Forzatti, P., Ballardini, D., and Sighicelli, L., Catal. Today, 1998, vol. 41, nos. 1–3, pp. 87–94.Google Scholar
  23. 23.
    Pratt, A.S. and Cairns, J.A., Platinum Met. Rev., 1977, vol. 21, no. 3, pp. 74–83.Google Scholar
  24. 24.
    Smith, R.W. and Mutasim, Z.Z., J. Therm. Spray Technol., 1992, vol. 1, no. 1, pp. 57–63.CrossRefGoogle Scholar
  25. 25.
    Ismagilov, Z.R., Podyacheva, O.Yu., Solonenko, O.P., Pushkarev, V.V., Kuz’min, V.I., Ushakov, V.A., and Rudina, N.A., Catal. Today, 1999, vol. 51, nos. 3–4, pp. 411–417.Google Scholar
  26. 26.
    US Patent 5 302 414, 1994.Google Scholar
  27. 27.
    Shikina, N., Podyacheva, O., Kosarev, V., and Ismagilov, Z., Mater. Manuf. Processes, 2016, vol. 31, no. 11, pp. 1521–1526.CrossRefGoogle Scholar
  28. 28.
    Alkhimov, A.P., Kosarev, V.F., and Papyrin, A.N., Dokl. Akad. Nauk, 1990, vol. 315, no. 4, pp. 1062–1065.Google Scholar
  29. 29.
    Mayernick, A.D. and Janik, M.J., J. Catal., 2011, vol. 278, no. 1, pp. 16–25.CrossRefGoogle Scholar
  30. 30.
    Xiao, L-H., Sun, K-P., Xu, X.-L., and Li, X.-N., Catal. Commun., 2005, vol. 6, no. 12, pp. 796–801.CrossRefGoogle Scholar
  31. 31.
    Colussi, S., Gayen, A., Camellone, M.F., Boaro, M., Llorca, J., Fabris, S., and Trovarelli, A., Angew. Chem., Int. Ed. Engl., 2009, vol. 48, no. 45, pp. 8481–8484.CrossRefGoogle Scholar
  32. 32.
    Gulyaev, R.V., Kardash, T.Yu., Malykhin, S.E., Stonkus, O.A., Ivanova, A.S., and Boronin, A.I., Phys. Chem. Chem. Phys., 2014, vol. 16, no. 26, pp. 13523–13539.CrossRefGoogle Scholar
  33. 33.
    Wang, N., Li, S., Zong, Y., and Yao, Q., J. Aerosol Sci., 2017, vol. 105, pp. 64–72.CrossRefGoogle Scholar
  34. 34.
    Lei, Y., Li, W., Liu, Q., Lin, Q., Zheng, X., Huang, Q., Guan, S., Wang, X., Wang, C., and Li, F., Fuel, 2018, vol. 233, pp. 10–20.CrossRefGoogle Scholar
  35. 35.
    Tsud, N., Veltruská, K., and Matolín, V., Surf. Sci., 2002, vols. 507–510, pp. 808–812.Google Scholar
  36. 36.
    Sun, K., Liu, J., Nag, N., and Browning, N.D., Catal. Lett., 2002, vol. 84, nos. 3–4, pp. 193–199.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.Institute of Coal Chemistry and Chemical Materials Science, Federal Science Center, Siberian Branch, Russian Academy of SciencesKemerovoRussia
  3. 3.Kemerovo State UniversityKemerovoRussia

Personalised recommendations