Catalysis in Industry

, Volume 11, Issue 4, pp 313–322 | Cite as

Preparing High-Octane Motor Fuel Components via the Oxidation of an Industrial Isobutane Fraction

  • D. P. IvanovEmail author
  • A. S. KharitonovEmail author
  • L. V. PirutkoEmail author
  • M. V. ParfenovEmail author
  • K. A. DubkovEmail author
  • D. E. BabushkinEmail author


The deep processing of heavy oil increases the production of hydrocarbon gases. The resulting butanes do not always find an equivalent market. A mixture of oxygenates with a high octane number is obtained in this work via oxidation of industrial isobutane fraction. The reaction proceeds both in with and without using Au/Silicalite-1 and Cu/SiO2 as catalysts. The influence of factors that reduce the formation of undesirable impurities (hydroperoxides, peroxides, and acids) is studied. Tert-butyl alcohol (TBA) obtainable with a selectivity of 64–69% and butane conversion of 55–69% is a target product. TBA has a RON of 113. Alcohols and ketones having RONs within 106–115 appear together with TBA during the oxidation. The best result was obtained for a Cu/SiO2 catalyst. More than 18% of TBA and 2.9 times more ketones are removed from a unit volume of a reaction space in the presence of a catalyst than during oxidation without a catalyst. The total productivity of the products suitable as high-octane components is 40 g/(L h), while the RON of this mixture is ≈111. A mixture of oxygenates including TBA has a lower volatility than that of methyl tert-butyl ether, which is especially important for the stability of gasolines in summer.


isobutane oxidation butane oxidation oxidation catalyst tert-butyl alcohol antiknock additives 



This work was supported by the RF Ministry of Science and Higher Education, grant no. RFMEFI60717X0169.


  1. 1.
    Kharitonov, A.S., Koltunov, K.Yu., Sobolev, V.I., Chumachenko, V.A., Noskov, A.S., and Kuznetsov, S.E., Catal. Ind., 2018, vol. 10, no. 2, pp. 115–117.CrossRefGoogle Scholar
  2. 2.
    Kharitonov, A.S., Ivanov, D.P., Parfenov, M.V., Piryutko, L.V., Semikolenov, S.V., Dubkov, K.A., Pereima, V.Yu., Noskov, A.S., Kondrashev, D.O., Kleimenov, A.V., Vedernikov, O.S., Kuznetsov, S.E., Galkin, V.V., and Abrashenkov, P.A., Catal. Ind., 2017, vol. 9, no. 3, pp. 204–211.CrossRefGoogle Scholar
  3. 3.
    Winkler, D.E. and Herne, G.W., Ind. Eng. Chem., 1961, vol. 53, no. 8, pp. 655–658.CrossRefGoogle Scholar
  4. 4.
    Emanuel’, N.M., Denisov, E.T., and Maizus, Z.K., Tsepnye reaktsii okisleniya uglevodorodov v zhidkoi faze (Chain Oxidation Reactions of Hydrocarbons in the Liquid Phase), Moscow: Nauka, 1965.Google Scholar
  5. 5.
    Coward, H.F. and Jones, G.W., Limits of Flammability of Gases and Vapors, Washington: United States Government Printing Office, 1952.Google Scholar
  6. 6.
    Khirnova, G.P., Bulygin, M.G., Blyumberg, E.A., Khcheyan, Kh.E., and Emelin, Yu.D., Neftekhimiya, 1980, no. 5, pp. 677–682.Google Scholar
  7. 7.
    Shah, U., Mahajani, S.M., Sharma, M.M., and Sridhar, T., Chem. Eng. Sci., 2000, vol. 55, no. 1, pp. 25–35.CrossRefGoogle Scholar
  8. 8.
    Albonetti, S., Cavani, F., and Trifirò, F., Catal. Rev.: Sci. Eng., 1996, vol. 38, no. 4, pp. 413–438.CrossRefGoogle Scholar
  9. 9.
    GB Patent 111621, 1968.Google Scholar
  10. 10.
    Blyumberg, E.A., Maiaus, Z.K., and Emanuel’, N.M., in Okislenie uglevodorodov v zhidkoi faze (Oxidation of Hydrocarbons in the Liquid Phase), Moscow: Akad. Nauk SSR, 1959.Google Scholar
  11. 11.
    US Patent 3 478 108, 1969.Google Scholar
  12. 12.
    RF Patent 2 402 520, 2010.Google Scholar
  13. 13.
    Sakaguchi, S., Kato, S., Iwahama, T., and Ishii, Y., Bull. Chem. Soc. Jpn., 1998, vol. 71, pp. 1237–1240.CrossRefGoogle Scholar
  14. 14.
    Dean, M.H. and Skirrow, G., Trans. Faraday Soc., 1958, vol. 54, pp. 849–862.CrossRefGoogle Scholar
  15. 15.
    US Patent 7 081 552, 2006.Google Scholar
  16. 16.
    Ivanova, S., Pitchon, V., and Petit, C., J. Mol. Catal. A: Chem., 2006, vol. 256, nos. 1–2, pp. 278–284.Google Scholar
  17. 17.
    Ivanova, S., Petit, C., and Pitchon, V., Appl. Catal., A, 2004, vol. 267, nos. 1–2, pp. 191–201.Google Scholar
  18. 18.
    Tsubota, S., Cunningham, D.A.H., Bando, Y., and Haruta, M., Stud. Surf. Sci. Catal., 1995, vol. 91, pp. 227–235.CrossRefGoogle Scholar
  19. 19.
    Ivanov, V.B. and Khavina, E.Yu., Colloid J., 2012, vol. 74, no. 1, pp. 51–56.CrossRefGoogle Scholar
  20. 20.
    RF Patent 2 139 272, 1999.Google Scholar
  21. 21.
    Flanigen, E.M., Bennett, J.M., Grose, R.W., Cohen, J.P., Patton, R.L., Kirchner, R.M., and Smith, J.V., Nature, 1978, vol. 271, no. 5645, pp. 512–516.CrossRefGoogle Scholar
  22. 22.
    Emel’yanov, V.E. and Skvortsov, V.N., Motornye topliva. Antidetonatsionnye svoistva i vosplamenyaemost’ (Motor Fuels: Antiknock Properties and Inflammability), Moscow: Tekhnika, TUMA GRUPP, 2006.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations