Optimizing the Properties of an Alumina Support of Hydrotreating Catalysts by Introducing Boron and Sulfur at the Stage of Obtaining Pseudoboehmite by Hydrothermal Treatment of the Product Produced by Flash Calcination of Gibbsite

  • 2 Accesses


The problem of optimizing the textural characteristics and chemical composition of the alumina support of a vacuum gasoil hydrotreating catalyst is considered. The catalyst is synthesized using the state-of-the-art environmentally friendly technology of flash calcination of gibbsite. Ways of increasing its specific surface area by introducing inorganic additives containing boron or sulfur at the stage of synthesizing boehmite with needle-shaped particles are developed. It is established that introducing such modifiers raises SBET by 50–100 m2/g, relative to the maximum values that can be attained by varying the standard parameters of hydrothermal treatment. It is shown that introducing boron at the stage of boehmite synthesis improves the catalytic activity of CoNiMoP catalyst in the hydrodesulfurization and hydrodenitrogenation of vacuum gasoil by two or more times, relative to a similar catalyst doped with boron from an impregnating solution.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.


  1. 1

    Vosoughi, V., Dalai, A.K., Abatzoglou, N., and Hu, Y., Appl. Catal., A, 2017, vol. 547, pp. 155–163.

  2. 2

    Sircar, S., Rao, M.B., and Golden, T.C., in Adsorption on New and Modified Inorganic Sorbents, Dąbrowski, A., Ed., New York: Elsevier, 1996, vol. 99, Supplement C, ch. 12, pp. 629–646.

  3. 3

    Banzaraktsaeva, S.P., Ovchinnikova, E.V., Isupova, L.A., and Chumachenko, V.A., Russ. J. Appl. Chem., 2017, vol. 90, no. 2, pp. 169–178.

  4. 4

    Ivanova, A.S., Kinet. Catal., 2012, vol. 53, no. 4, pp. 425–439.

  5. 5

    Catalyst Supports and Supported Catalysts: Theoretical and Applied Concepts, Stiles, A.B., Ed., Boston : Butterworths, 1987.

  6. 6

    Digne, M., Sautet, P., Raybaud, P., Toulhoat, H., Artacho, E., J. Phys. Chem. B, 2002, vol. 106, no. 20, pp. 5155–5162.

  7. 7

    Hochepied, J.F. and Nortier, P., Powder Technol., 2002, vol. 128, nos. 2–3, pp. 268–275.

  8. 8

    Yoldas, B.E., J. Appl. Chem. Biotechnol., 1973, vol. 23, no. 11, pp. 803–809.

  9. 9

    Mishra, D., Anand, S., Panda, R.K., and Das, R.P., Mater. Lett., 2000, vol. 42, no. 1, pp. 38–45.

  10. 10

    Egorova, S.R., Mukhamed’yarova, A.N., Kurbangaleeva, A.Z., Zhang, Y., and Lamberov, A.A., React. Kinet., Mech. Catal., 2018, vol. 125, no. 2, pp. 873–885.

  11. 11

    Miño, A., Lancelot, C., Blanchard, P., Lamonier, C., Rouleau, L., Roy-Auberger, M., Royer, S., and Payen, E., Appl. Catal., A, 2017, vol. 530, pp. 145–153.

  12. 12

    Rayo, P., Rodríguez-Hernández, A., Torres-Mancera, P., Muñoz, J.A.D., Ancheyta, J., and García de León, R.G., Catal. Today, 2018, vol. 305, pp. 2–12.

  13. 13

    Isupova, L.A., Tanashev, Y.Y., Kharina, I.V., Moroz, E.M., Litvak, G.S., Boldy’reva, N.N., Paukshtis, E.A., Burgina, E.B., Budneva, A.A., Shmakov, A.N., Rudina, N.A., Kruglyakov, V.Y., and Parmon, V.N., Chem. Eng. J., 2005, vol. 107, nos. 1–3, pp. 163–169.

  14. 14

    Jaworska-Galas, Z., Janiak, S., Miśta, W., Wrzyszcz, J., and Zawadzki, M., J. Mater. Sci., 1993, vol. 28, no. 8, pp. 2075–2078.

  15. 15

    Matveyeva, A.N., Pakhomov, N.A., and Murzin, D.Yu., Ind. Eng. Chem. Res., 2016, vol. 55, no. 34, pp. 9101–9108.

  16. 16

    Danilevich, V.V., Klimov, O.V., Nadeina, K.A., Gerasimov, E.Yu., Cherepanova, S.V., Vatutina, Yu.V., and Noskov, A.S., Superlattices Microstruct., 2018, vol. 120, pp. 148–160.

  17. 17

    Kul’ko, E.V., Ivanova, A.S., Kruglyakov, V.Yu., Moroz, E.M., Shefer, K.I., Litvak, G.S., Kryukova, G.N., Tanashev, Yu.Yu., and Parmon, V.N., Kinet. Catal., 2007, vol. 48, no. 2, pp. 316–326.

  18. 18

    Jovanović, N., Novaković, T., Janaćković, J., and Terlecki-Baričević, A., J. Colloid Interface Sci., 1992, vol. 150, no. 1, pp. 36–41.

  19. 19

    Safaei, M., J. Aust. Ceram. Soc., 2017, vol. 53, no. 2, pp. 485–490.

  20. 20

    Salomão, R., Kawamura, M.A., Souza, A.D.V., and Sakihama, J., Interceram., 2017, vol. 66, no. 7, pp. 28–37.

  21. 21

    Zolotovskii, B.P., Buyanov, R.A., Bukhtiyarova, G.A., Demin, V.V., and Tsybulevskii, A.M., React. Kinet. Catal. Lett., 1995, vol. 55, no. 2, pp. 523–535.

  22. 22

    Tanashev, Yu.Yu., Moroz, E.M., Isupova, L.A., Ivanova, A.S., Litvak, G.S., Amosov, Yu.I., Rudina, N.A., Shmakov, A.N., Stepanov, A.G., Kharina, I.V., Kul’ko, E.V., Danilevich, V.V., Balashov, V.A., Kruglyakov, V.Yu., Zolotarskii, I.A., and Parmon, V.N., Kinet. Catal., 2007, vol. 48, no. 1, pp. 153–161.

  23. 23

    Synthesis of Solid Catalysts, De Jong, K., Ed., New York: Wiley, 2009.

  24. 24

    Ancheyta, J., Rana, M.S., and Furimsky, E., Catal. Today, 2005, vol. 109, nos. 1–4, pp. 3–15.

  25. 25

    Klimov, O.V., Leonova, K.A., Koryakina, G.I., Gerasimov, E.Yu., Prosvirin, I.P., Cherepanova, S.V., Budukva, S.V., Pereyma, V.Yu., Dik, P.P., Parakhin, O.A., and Noskov, A.S., Catal. Today, 2014, vols. 220–222, pp. 66–77.

  26. 26

    Zhang, W., Zheng, X., Zhao, X., Zheng, Y., and Jiang, L., Mater. Lett., 2015, vol. 160, pp. 85–87.

  27. 27

    Dumeignil, F., Sato, K., Imamura, M., Matsubayashi, N., Payen, E., and Shimada, H., Appl. Catal., A, 2006, vol. 315, pp. 18–28.

  28. 28

    Danilevich, V.V., Isupova, L.A., Paukshtis, E.A., and Ushakov, V.A., Kinet. Catal., 2014, vol. 55, no. 3, pp. 372–379.

  29. 29

    Danilevich, V.V., Lakhmostov, V.S., Zakharov, V.P., Tanashev, Yu.Yu., Sokolov, D.N., Isupova, L.A., and Parmon, V.N., Katal.Prom-sti, 2016, vol. 16, no. 1, pp. 13–28.

  30. 30

    Klimov, O.V., Nadeina, K.A., Dik, P.P., Koryakina, G.I., Pereyma, V.Yu., Kazakov, M.O., Budukva, S.V., Gerasimov, E.Yu., Prosvirin, I.P., Kochubey, D.I., and Noskov, A.S., Catal. Today, 2016, vol. 271, pp. 56–63.

  31. 31

    Sing, K.S.W., Colloids Surf., A, 2004, vol. 241, nos. 1–3, pp. 3–7.

  32. 32

    Klimov, O.V. Vatutina, Y.V., Nadeina, K.A., Kazakov, M.O., Gerasimov, E.Y., Prosvirin, I.P., Larina, T.V., and Noskov, A.S., Catal. Today, 2018, vol. 305, pp. 192–202.

  33. 33

    Karouia, F., Boualleg, M., Digne, M., et al., Powder Technol., 2013, vol. 237, pp. 602–609.

  34. 34

    Tsybulya, S.V. and Kryukova, G.N., Phys. Rev. B: Solid State, 2008, vol. 77, no. 2.

  35. 35

    Lavrenov, A.V., Buluchevskiy, E.A., Karpova, T.R., Moiseenko, M.A., Mikhailova, M.S., Chumachenko, Y.A., Skoplyuk, A.A., Gulyaeva, T.I., Arbuzov, A.B., Leontieva, N.N., and Drozdov, V.A., Chem. Sustainable Dev., 2011, vol. 1, pp. 81–89.

  36. 36

    Karpova, T.R., Buluchevskiy, E.A., Lavrenov, A.V., Leontyeva, N.N., Trenikhin, M.V., Gulyaeva, T.I., and Talzi, V.P., Chem. Sustainable Dev., 2013, vol. 1, pp. 53–60.

  37. 37

    Koval’skaya, A.A., Nadeina, K.A., Kazakov, M.O., Danilevich, V.V., Danilova, I.G., Gerasimov, E.Yu., Klimov, O.V., and Noskov, A.S., Russ. J. Appl. Chem., 2018, vol. 91, no. 12, pp. 2022–2029.

  38. 38

    Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing, K.S.W., Pure Appl. Chem., 2015, vol. 87, nos. 9–10, pp. 1051–1069.

  39. 39

    Thommes, M. and Cychosz, K.A., Adsorption, 2014, vol. 20, nos. 2–3, pp. 233–250.

  40. 40

    Vatutina, Y.V., Klimov, O.V., Nadeina, K.A., Danilova, I.G., Gerasimov, E.Y., Prosvirin, I.P., and Noskov, A.S., Appl. Catal., B, 2016, vol. 199, pp. 23–32.

  41. 41

    Usman, U., Takaki, M., Kubota, T., and Okamoto, Y., Appl. Catal., A, 2005, vol. 286, no. 1, pp. 148–154.

  42. 42

    Azizi, N., Ali, S.A., Alhooshani, K., Kim, T., Lee, Y., Park, J.-I., Miyawaki, J., Yoon, S.-H., and Mochida, I., Fuel Process. Technol., 2013, vol. 109, pp. 172–178.

Download references

Author information

Correspondence to V. V. Danilevich or E. A. Stolyarova or Yu. V. Vatutina or E. Yu. Gerasimov or V. A. Ushakov or A. V. Saiko or O. V. Klimov or A. S. Noskov.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Danilevich, V.V., Stolyarova, E.A., Vatutina, Y.V. et al. Optimizing the Properties of an Alumina Support of Hydrotreating Catalysts by Introducing Boron and Sulfur at the Stage of Obtaining Pseudoboehmite by Hydrothermal Treatment of the Product Produced by Flash Calcination of Gibbsite. Catal. Ind. 11, 301–312 (2019).

Download citation


  • flash calcination
  • pseudoboehmite
  • alumina
  • aluminum borate
  • hydrotreating
  • vacuum gasoil