Advertisement

Catalysis in Industry

, Volume 11, Issue 4, pp 278–285 | Cite as

Structural and Electronic Properties of Highly Dispersed Particles of the Active Components of Pd/Al2O3 Catalysts of Butadiene-1,3 Hydrogenation

  • A. V. BoretskayaEmail author
  • I. R. IlyasovEmail author
  • A. A. LamberovEmail author
CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY

Abstract

The effect of the acidic characteristics of an alumina support on the properties of formed palladium particles is studied to improve the activity of catalysts for the hydrogenation of unsaturated hydrocarbons of the pyrogasoline fraction. High catalytic activity is characteristic of highly dispersed palladium particles, but the surfaces of palladium particles are blocked by unsaturated hydrocarbons, due to their electron deficiency. In this work, palladium/alumina catalysts with supports of different acidities due to chemical modification with various reagents are studied via NH3 temperature-programed desorption, transmission electron microscopy, and X-ray photoelectron spectroscopy. The samples are subjected to catalytic tests in the butadiene-1,3 hydrogenation reaction under laboratory conditions. The catalysts on supports with acidic modifiers display low butadiene-1,3 conversion and higher selectivity toward butene-1, relative to an unmodified sample. The catalysts on the supports treated with basic additives displayed high butadiene-1,3 conversion while retaining their selectivities toward butene-1 and butane.

Keywords:

butadiene hydrogenation γ-Al2O3 modification NH3 temperature-programmed desorption transmission electron microscopy X-ray photoelectron spectroscopy 

Notes

FUNDING

This work was by supported by a subsidy granted to Kazan (Volga) Federal University to improve its competitiveness among the world’s leading scientific and educational centers.

REFERENCES

  1. 1.
    Moyes, R.B., Wells, P.B., Grant, J., and Salman, N.Y., Appl. Catal., A, 2002, vol. 229, nos. 1–2, pp. 251–259.Google Scholar
  2. 2.
    Bhogeswararao, S. and Srinivas, D., J. Catal., 2015, vol. 327, pp. 65–77.CrossRefGoogle Scholar
  3. 3.
    Lonergan, W.W., Xing, X., Zheng, R., Qi, S., Huang, B., and Chen, J.G, Catal. Today, 2011, vol. 160, no. 1, pp. 61–69.CrossRefGoogle Scholar
  4. 4.
    Benkhaled, M., Descorme, C., Duprez, D., Morin, S., Thomazeau, C., and Uzio, D., Appl. Catal., A, 2008, vol. 346, nos. 1–2, pp. 36–43.Google Scholar
  5. 5.
    Silvestre-Albero, J., Rupprechter, G., and Freund, H.-J., Chem. Commun., 2006, no. 1, pp. 80–82.Google Scholar
  6. 6.
    Silvestre-Albero, J., Borasio, M., Rupprechter, G., and Freund, H.-J., Catal. Commun., 2007, vol. 8, no. 3, pp. 292–298.CrossRefGoogle Scholar
  7. 7.
    Derrien, M.L., Stud. Surf. Sci. Catal., 1986, vol. 27, pp. 613–666.CrossRefGoogle Scholar
  8. 8.
    Ouchaib, T., Massardier, J., and Renouprez, A., J. Catal., 1989, vol. 119, no. 2, pp. 517–520.CrossRefGoogle Scholar
  9. 9.
    Mittendorfer, F., Thomazeau, C., Raybaud, P., and Toulhoat, H., J. Phys. Chem. B, 2003, vol. 107, no. 44, pp. 12287–12295.CrossRefGoogle Scholar
  10. 10.
    Kang, J.H., Shin, E.W., Kim, W.J., Park, J.D., and Moon, S.H., J. Catal., 2002, vol. 208, no. 2, pp. 310–320.CrossRefGoogle Scholar
  11. 11.
    Khan, N.A., Shaikhutdinov, S., and Freund, H.-J., Catal. Lett., 2006, vol. 108, nos. 3–4, pp. 159–164.Google Scholar
  12. 12.
    Stakheev, A.Yu. and Kustov, L.M., Appl. Catal., A, 1999, vol. 188, nos. 1–2, pp. 3–35.Google Scholar
  13. 13.
    Hub, S., Hilaire, L., and Touroude, R., Appl. Catal., 1988, vol. 36, pp. 307–322.CrossRefGoogle Scholar
  14. 14.
    Boitiaux, J.P., Cosyns, J., and Robert, E., Appl. Catal., 1987, vol. 35, no. 2, pp. 193–209.CrossRefGoogle Scholar
  15. 15.
    Tardy, B., Noupa, C., Leclercq, C., Bertolini, J.C., Houreau, A., Treilleux, M., Faure, J.P., and Nihoul, G., J. Catal., 1991, vol. 129, no. 1, pp. 1–11.CrossRefGoogle Scholar
  16. 16.
    Valden, M., Lai, X., and Goodman, D.W., Science, 1998, vol. 281, no. 5383, pp. 1647–1650.CrossRefGoogle Scholar
  17. 17.
    Mohr, C. and Claus, P., Sci. Prog., 2001, vol. 84, no. 4, pp. 311–334.CrossRefGoogle Scholar
  18. 18.
    Zhang, Z., Zhu, Y., Asakura, H., Zhang, B., Zhang, J., Zhou, M., Han, Y., Tanaka, T., Wang, A., Zhang, T., and Yan, N., Nat. Comm., 2017, vol. 8. https://www. nature.com/articles/ncomms16100. Cited October 8, 2019.Google Scholar
  19. 19.
    Berhault, G., Bisson, L., Thomazeau, C., Verdon, C., and Uzio, D., Appl. Catal., A, 2007, vol. 327, no. 1, pp. 32–43.Google Scholar
  20. 20.
    Lucci, F.R., Liu, J., Marcinkowski, M.D., Yang, M., Allard, L.F., Flytzani-Stephanopoulos, M., and Sykes, E.C.H., Nat. Comm., 2015, vol. 6. https://www.nature.com/articles/ncomms9550. Cited October 8, 2019.Google Scholar
  21. 21.
    Gaube, J. and Klein, H.-F., Appl. Catal., A, 2014, vol. 470, pp. 361–368.Google Scholar
  22. 22.
    Guseva, L., Plastik, 2015, no. 3, pp. 16–20.Google Scholar
  23. 23.
    Delage, M., Didillon, B., Huiban, Y., Lynch, J., and Uzio, D., Stud. Surf. Sci. Catal., 2000, vol. 130, pp. 1019–1024.CrossRefGoogle Scholar
  24. 24.
    Boretskaya, A.V., Il’yasov, I.R., Lamberov, A.A., and Laskin, A.I., Russ. J. Appl. Chem., 2017, vol. 90, no. 2, pp. 161–168.CrossRefGoogle Scholar
  25. 25.
    Yashnik, S.A., Kuznetsov, V.V., and Ismagilov, Z.R., Chin. J. Catal., 2018, vol. 39, no. 2, pp. 258–274.CrossRefGoogle Scholar
  26. 26.
    Dai, Q., Zhu, Q., Lou, Y., and Wang, X., J. Catal., 2018, vol. 357, pp. 29–40.CrossRefGoogle Scholar
  27. 27.
    Borisevich, Yu.P., Fomichev, Yu.V., and Levinter, M.E., Zh. Fiz. Khim., 1982, vol. 56, no. 5, pp. 1298–1299.Google Scholar
  28. 28.
    Paukshtis, E.A., Infrakrasnaya spektroskopiya v geterogennom kislotno-osnovnom katalize (Infrared Spectroscopy in Heterogeneous Acid-Base Catalysis), Novosibirsk: Nauka, 1992.Google Scholar
  29. 29.
    Contescu, C., Contescu, A., Schramm, C., Sato, R., and Schwartz, J.A., J. Colloid Interface Sci., 1994, vol. 165, no. 1, pp. 66–71.CrossRefGoogle Scholar
  30. 30.
    Lamberov, A.A., Khalilov, I.F., Il’yasov, I.R., Bikmurzin, A.Sh., and Gerasimova, A.V., Vestn. Kazan. Tekhnol. Univ., 2011, no. 13, pp. 24–35.Google Scholar
  31. 31.
    Saifullin, R.S., Fizikokhimiya neorganicheskikh poli-mernykh i kompozitsionnykh materialov (Physical Chemistry of Inorganic Polymeric and Composite Materials), Moscow: Khimiya, 1990.Google Scholar
  32. 32.
    Chesnokov, V.V., Prosvirin, I.P., Zaitseva, N.A., Zaikovskii, V.I., and Molchanov, V.V., Kinet. Catal., 2002, vol. 43, no. 6, pp. 838–846.CrossRefGoogle Scholar
  33. 33.
    Miegge, P., Rousset, J.L., Tardy, B., Massardier, J., and Bertolini, J.C., J. Catal., 1994, vol. 149, no. 2, pp. 404–413.CrossRefGoogle Scholar
  34. 34.
    Narayanan, R. and El-Sayed, M.A., J. Am. Chem. Soc., 2004, vol. 126, no. 23, pp. 7194–7195.CrossRefGoogle Scholar
  35. 35.
    Silvestre-Albero, J., Rupprechter, G., and Freund, H.-J., J. Catal., 2005, vol. 235, no. 1, pp. 52–59.CrossRefGoogle Scholar
  36. 36.
    Bragin, O.V. and Liberman, A.L., Prevrashcheniya uglevodorodov na metallsoderzhashchikh katalizatorakh (Conversion of Hydrocarbons on Metal-Containing Catalysts), Moscow: Khimiya, 1981.Google Scholar
  37. 37.
    Bursian, N.R., Tekhnologiya izomerizatsii parafinovykh uglevodorodov (Isomerization Technology for Paraffin Hydrocarbons), Leningrad: Khimiya, 1985.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Kazan (Volga) Federal UniversityKazanRussia
  2. 2.Butlerov Institute of Chemistry, Kazan State UniversityKazanRussia

Personalised recommendations