Catalysis in Industry

, Volume 11, Issue 4, pp 335–341 | Cite as

Alkaline-Modified Activated Carbons for Removing Hydrogen Sulfide from Air via Sorption and Catalytic Oxidation: Studying the Effect of Thermal Treatment on the Properties of Materials

  • I. E. BarkovskiiEmail author
  • A. I. LysikovEmail author
  • J. V. VeselovskayaEmail author
  • N. V. MaltsevaEmail author
  • A. G. OkunevEmail author


Modified carbon materials are prepared via the incipient wetness impregnation of activated carbon with a sodium hydroxide solution followed by thermal treatment in air at moderate temperatures (60–200°C). The prepared samples are tested for their capacity to remove hydrogen sulfide from air via catalytic sorption. The effect of the temperature of thermal treatment (activation) on the dynamic H2S sorption capacity of the modified carbon materials is highlighted. By modifying activated carbons via incipient wetness impregnation with aqueous NaOH, followed by thermal treatment in air at 200°C, it is possible to increase the dynamic sorption capacity of carbon materials for H2S by a factor of more than 8. The results from this study can be used in developing new materials for removing hydrogen sulfide from air on the basis of commercially available types of activated carbons.


hydrogen sulfide activated carbon sodium hydroxide air purification sorption capacity oxidation 



We are grateful to A. M. Tsapina and A. A. Saraev for X-ray photoelectron spectroscopy measurements.


This work was performed as part of the state taks for the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, project no. АААА-А17-117041710077-4.


  1. 1.
    Active Carbon, Bansal, R.C., Donnet, J.B., and Stoeckli, F., Eds., New York: Marcel Dekker, 1988.Google Scholar
  2. 2.
    Radovic, L.R. and Sudhakar, C., in Introduction to Carbon Technologies, Marsh, H., Heintz, E.A., and Rodriguez-Reinoso, F., Eds., Alicante: University of Alicante, 1997, pp. 103–165.Google Scholar
  3. 3.
    Boehm, H.P., Carbon, 1994, vol. 32, no. 5, p. 759–769.CrossRefGoogle Scholar
  4. 4.
    Hedden, K., Humber, L., and Rao, B.R., VDI-Ber., 1976, no.253, pp. 37–42.Google Scholar
  5. 5.
    Bagreev, A., Adib, F., and Bandosz, T.J., Carbon, 2001, vol. 39, no. 12, pp. 1897–1905.CrossRefGoogle Scholar
  6. 6.
    Steijns, M. and Mars, P., Ind. Eng. Chem. Prod. Res. Dev., 1977, vol. 16, no. 1, pp. 35–41.CrossRefGoogle Scholar
  7. 7.
    Adib, F., Bagreev, A., and Bandosz, T.J., Langmuir, 2000, vol. 16, no. 4, pp. 1980–1986.CrossRefGoogle Scholar
  8. 8.
    Bandosz, T.J., Bagreev, A., Adib, F., and Turk, A., Environ. Sci. Technol., 2000, vol. 34, no. 6, pp. 1069–1074.CrossRefGoogle Scholar
  9. 9.
    Adib, F., Bagreev, A., and Bandosz, T.J., Environ. Sci. Technol., 2000, vol. 34, no. 4, pp. 686–692.CrossRefGoogle Scholar
  10. 10.
    Adib, F., Bagreev, A., and Bandosz, T.J., J. Colloid Interface Sci., 1999, vol. 216, no. 2, pp. 360–369.CrossRefGoogle Scholar
  11. 11.
    Menezes, R.L.C.B., Moura, K.O., de Lucena, S.M.P., Azevedo, D.C.S., and Bastos-Neto, M., Ind. Eng. Chem. Res., 2018, vol. 57, no. 6, pp. 2248–2257.CrossRefGoogle Scholar
  12. 12.
    Bagreev, A. and Bandosz, T.J., Ind. Eng. Chem. Res., 2002, vol. 41, no. 4, pp. 672–679.CrossRefGoogle Scholar
  13. 13.
    Sitthikhankaew, R., Chadwick, D., Assabumrungrat, S., and Laosiripojana, N., Chem. Eng. Commun., 2014, vol. 201, no. 2, pp. 257–271.CrossRefGoogle Scholar
  14. 14.
    Chiang, H.-L., Tsai, J.-H., Tsai, C.-L., and Hsu, Y.-C., Sep. Sci. Technol., 2000, vol. 35, no. 6, pp. 903–918.CrossRefGoogle Scholar
  15. 15.
    Sitthikhankaew, R., Chadwick, D., Assabumrungrat, S., and Laosiripojana, N., Fuel Process. Technol., 2014, vol. 124, pp. 249–257.CrossRefGoogle Scholar
  16. 16.
    Przepiórski, J., Yoshida, S., and Oya, A., Carbon, 1999, vol. 37, no. 12, pp. 1881–1890.CrossRefGoogle Scholar
  17. 17.
    Ismagilov, Z.R., Khairulin, S.R., Nevedrov, A.V., Papin, A.V., and Zhbyr’, E.V., Vestn. Kuzbasskogo Gos. Tekh. Univ., 2013, no. 1, pp. 87–92.Google Scholar
  18. 18.
    ASTM (International Standard) D6646-03: Test Method for Determination of the Accelerated Hydrogen Sulfide Breakthrough Capacity of Granular and Pelletized Activated Carbon, 2014.Google Scholar
  19. 19.
    Shang, G., Liu, L., Chen, P., Shen, G., and Li, Q., J. Air Waste Manage. Assoc., 2016, vol. 66, no. 5, pp. 439–445.CrossRefGoogle Scholar
  20. 20.
    Maltseva, N.V., Golovin, V.A., Chikunova, Yu.O., and Gribov, E.N., Elektrokhimiya, 2018, vol. 54, no. 5, pp. 489–496.Google Scholar
  21. 21.
    Demir-Cakan, R., Morcrette, M., Nouar, F., Davoisne, C., Devic, T., Gonbeau, D., Dominko, R., Serre, C., Férey, G., and Tarascon, J.-M., J. Am. Chem. Soc., 2011, vol. 133, no. 40, pp. 16 154–16 160.CrossRefGoogle Scholar
  22. 22.
    Appay, M.-D., Manoli, J.-M., Potvin, C., Muhler, M., Wild, U., Pozdnyakova, O., and Paál, Z., J. Catal., 2004, vol. 222, no. 2, pp. 419–428.CrossRefGoogle Scholar
  23. 23.
    Wu, Z., Jin, R., Wang, H., and Liu, Y., Catal. Commun., 2009, vol. 10, no. 6, pp. 935–939.CrossRefGoogle Scholar
  24. 24.
    Karthe, S., Szargan, R., and Suoninen, E., Appl. Surf. Sci., 1993, vol. 72, no. 2, pp. 157–170.CrossRefGoogle Scholar
  25. 25.
    Mazgarov, A.M. and Kornetova, O.M., Tekhnologii ochistki poputnogo neftyanogo gaza ot serovodoroda (Technology for the Purification of Associated Petroleum Gas from Hydrogen Sulfide), Kazan: Kazan. Gos. Univ., 2015.Google Scholar
  26. 26.
    Agaev, G.A., Nasteka, V.I., and Seidov, Z.D., Okislitel’nye protsessy ochistki sernistykh prirodnykh gazov i uglevodorodnykh kondensatov (Oxidative Processes for the Purification of Sour Natural Gases and Hydrocarbon Condensates), Moscow: Nedra, 1996.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations