Catalysis in Industry

, Volume 11, Issue 1, pp 80–86 | Cite as

Mathematical Modeling of the Dehydrating Ethanol to Ethylene Process in a Multitubular Reactor on a Ring-Shaped Alumina Catalyst

  • E. V. OvchinnikovaEmail author
  • S. P. Banzaraktsaeva
  • E. A. Kalugina
  • V. A. Chumachenko


The process of dehydrating ethanol to ethylene by varying geometrical dimensions of a ring-shaped alumina catalyst is studied using a mathematical 2D model of a multitubular reactor. The set of ring sizes determines equivalent grain size Req, on which catalyst’s effectiveness factor η depends in turn. A procedure is proposed for assigning grains with different geometric dimensions to four structural groups, depending on the technique used to synthesize samples with the same equivalent size Req. Based on this approach, a system of criteria is developed for selecting catalyst grains with the best characteristics for given conditions. The geometric sizes of grains and other parameters that ensure the highest ethylene yield at the lowest values of the pressure drop and the residence time are determined.


mathematical model multitubular reactor dehydrating ethanol to ethylene alumina catalyst ring catalyst’s effectiveness factor equivalent grain size pressure drop 



The authors are grateful to Dr. V.Y. Kruglyakov (BIC) for experimental testing mechanical strength of alumina catalysts and valuable suggestions on their implementation and Engineer S.S. Pogodkina (BIC) for assistance in computation.

This work was conducted within the framework of the budget project АААА-А17-117041710076-7 for the Boreskov Institute of Catalysis.


  1. 1.
    Vernikovskaya, N.V., Chem. Eng. J., 2017, vol. 329, pp. 15–24.CrossRefGoogle Scholar
  2. 2.
    Chumachenko, V.A., Ovchinnikova, E.V., Gribovskii, A.G., and Makarshin, L.L., Catal. Ind., 2016, vol. 8, no. 3, pp. 199–204. CrossRefGoogle Scholar
  3. 3.
    Ivanchina, E.D., Ivashkina, E.N., Kozlov, I.A., Dolganova, I.O., and Platonov, V.V., Katal. Prom-sti, 2015, no. 1, pp. 55–63.Google Scholar
  4. 4.
    Ovchinnikova, E.V., Chumachenko, V.A., and Valui-skikh, N.N., Catal. Ind., 2013, vol. 5, no. 4, pp. 297–311. CrossRefGoogle Scholar
  5. 5.
    Beskov, V.S., Brushtein, E.A., Vanchurin, V.I., Golovnya, E.V., and Yashchenko, A.V., Catal. Ind., 2010, vol. 2, no. 3, pp. 266–269. CrossRefGoogle Scholar
  6. 6.
    Klenov, O.P., Khanaev, V.M., Borisova, E.S., Sviri-donov, A.A., and Noskov, A.S., Katal. Prom-sti, 2008, no. S1, pp. 38–46.Google Scholar
  7. 7.
    Kagyrmanova, A.P., Zolotarskii, I.A., Vernikovskaya, N.V., Smirnov, E.I., Kuz’min, V.A., and Chumakova, N.A., Theor. Found. Chem. Eng., 2006, vol. 40, no. 2, pp. 155–167.CrossRefGoogle Scholar
  8. 8.
    Davletshin, R.S., Mustafina, S.A., Balaev, A.V., and Spivak, S.I., Katal. Prom-sti, 2005, no. 6, pp. 34–40.Google Scholar
  9. 9.
    Morschbaker, A., J. Macromol. Sci., Polym. Rev., 2009, vol. 49, no. 2, pp. 79–84.CrossRefGoogle Scholar
  10. 10.
    Vil’danov, F.Sh., Latypova, F.N., Chanyshev, R.R., and Nikolaeva, S.V., Bashk. Khim. Zh., 2011, no. 3, pp. 132–135.Google Scholar
  11. 11.
    Reddy, M.M., Vivekanandhan, S., Misra, M., Bhatia, S.K., and Mohanty, A.K., Prog. Polym. Sci., 2013, vol. 38, nos. 10–11, pp. 1653–1689.Google Scholar
  12. 12.
    Yakovleva, I.S., Banzaraktsaeva, S.P., Ovchinnikova, E.V., Chumachenko, V.A., and Isupova, L.A., Catal. Ind., 2016, vol. 8, no. 2, pp. 152–167. Scholar
  13. 13.
    Skiba, E.A., Baibakova, O.V., Budaeva, V.V., Pavlov, I.N., Vasilishin, M.S., Makarova, E.I., Sakovich, G.V., Ovchin-nikova, E.V., Banzaraktsaeva, S.P., Vernikovskaya, N.V., and Chumachenko, V.A., Chem. Eng. J., 2017, vol. 329, pp. 178–186.CrossRefGoogle Scholar
  14. 14.
    Kagyrmanova, A.P., Chumachenko, V.A., Korotkikh, V.N., Kashkin, V.N., and Noskov, A.S., Chem. Eng. J., 2011, vols. 176–177, pp. 188–194.Google Scholar
  15. 15.
    Banzaraktsaeva, S.P., Ovchinnikova, E.V., Isupova, L.A., and Chumachenko, V.A., Russ. J. Appl. Chem., 2017, vol. 90, no. 2, pp. 169–178.CrossRefGoogle Scholar
  16. 16.
    RF Patent 2609263C1, 2017.Google Scholar
  17. 17.
    Ovchinnikova, E.V., Isupova, L.A., Danilova, I.G., Danilevich, V.V., and Chumachenko, V.A., Russ. J. Appl. Chem., 2016, vol. 89, no. 5, pp. 683–689.CrossRefGoogle Scholar
  18. 18.
    Danilevich, V.V., Lakhmostov, V.S., Zakharov, V.P., Tanashev, Yu.Yu., Sokolov, D.N., Isupova, L.A., and Parmon, V.N., Katal. Prom-sti, 2016, no. 1, pp. 13–28.Google Scholar
  19. 19.
    Zolotarskii, I.A., Voennov, L.I., Zudilina, L.Yu., Isupova, L.A., Zotov, R.A., Medvedev, D.A., Stepanov, D.A., Livanova, A.V., Meshcheryakov, E.P., and Kurzina, I.A., Catal. Ind., 2018, vol. 10, no. 1, pp. 49–56. CrossRefGoogle Scholar
  20. 20.
    Slin’ko, M.G., Dil’man, V.V., Markeev, B.M., and Kronberg, A.E., Khim. Prom-st’, 1980, no. 11, pp. 22–41.Google Scholar
  21. 21.
    Slin’ko, M.G., Modelirovanie khimicheskikh reaktorov (Modeling of Chemical Reactors), Novosibirsk: Nauka, 1968.Google Scholar
  22. 22.
    Malinovskaya, O.A., Beskov, V.S., and Slin’ko, M.G., Modelirovanie kataliticheskikh protsessov na poristykh zernakh (Modeling of Catalytic Processes on Porous Grains), Novosibirsk: Nauka, 1975.Google Scholar
  23. 23.
    Reid, R.C., Prausnitz, J.M., and Sherwood, T.K., The Properties of Gases and Liquids, New York: McGraw-Hill, 1977.Google Scholar
  24. 24.
    Kruglyakov, V.Yu., Isupova, L.A., Glazyrin, A.V., Danilevich, V.V., and Kharina, I.V., Katal. Prom-sti, 2016, no. 1, pp. 6–12.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. V. Ovchinnikova
    • 1
    Email author
  • S. P. Banzaraktsaeva
    • 1
  • E. A. Kalugina
    • 1
  • V. A. Chumachenko
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations