Advertisement

Catalysis in Industry

, Volume 11, Issue 1, pp 45–52 | Cite as

Catalytic Synthesis of Triethanolamine in a Microchannel Reactor

  • D. V. AndreevEmail author
  • E. E. Sergeev
  • L. L. Makarshin
  • E. A. Ivanov
  • A. G. Gribovskii
  • N. Yu. Adonin
  • Z. P. Pai
  • V. N. Parmon
CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • 2 Downloads

Abstract

Experimental studies of ammonia oxyethylation in a flow microchannel reactor are performed in broad ranges of temperatures (70–180°C) and residence times (0.47–3.3 min). The main products of the reaction between ethylene oxide (EO) and ammonia are monoethanolamine (MEA), diethanolamine (DEA), and target triethanolamine (TEA). It is shown that EO conversion grows along with residence time τ and reaches 90% at τ = 3.3 min. The highest selectivity toward MEA and DEA is observed at a temperature of 70°C and τ = 3.3 min. High selectivity toward TEA (84%) is achieved at short τ (0.47 min) and the maximum temperature (180°C). The TEA yield grows along with temperature and the residence time to reach 62% at τ = 3.3 min and temperatures of 155–180°C. Mathematical modeling of the ammonia oxyethylation process allows the kinetic constants of individual stages to be calculated. Differences between the obtained kinetic parameters and the literature data, due probably to using a microchannel reactor that ensures high parameters of heat and mass transfer instead of a traditional bulk triethanolamine synthesis reactor, are revealed.

Keywords:

monoethanolamine diethanolamine triethanolamine ammonia ethylene oxide catalytic synthesis microchannel reactor numerical modeling 

Notes

ACKNOWLEDGMENTS

This work was performed as part of a State Task for the Boreskov Institute of Catalysis, project nos. AAAA-A17-117041710082-8 and AAAA-A17-117041710081-1.

REFERENCES

  1. 1.
    Young, J.A., J. Chem. Educ., 2004, vol. 81, no. 1, p. 24.CrossRefGoogle Scholar
  2. 2.
    Tsuneki, H. and Moriya, A., Chem. Eng. J., 2009, vol. 149, nos. 1–3, pp. 363–369.Google Scholar
  3. 3.
    Zahedi, G., Amraei, S., and Biglari, M., Korean J. Chem. Eng., 2009, vol. 26, no. 6, pp. 1504–1511.CrossRefGoogle Scholar
  4. 4.
    Tsuneki, H., Kirishiki, M., and Oku, T., Bull. Chem. Soc. Jpn., 2007, vol. 80, no. 6, pp. 1075–1090.CrossRefGoogle Scholar
  5. 5.
    Tsuneki, H., Catal. Surv. Asia, 2010, vol. 14, nos. 3–4, pp. 116–123.Google Scholar
  6. 6.
    Ruming, F., Deju, W., Zhongneng, L., and Zaiku, X., Catal. Commun., 2010, vol. 11, no. 15, pp. 1220–1223.CrossRefGoogle Scholar
  7. 7.
    Andreev, D.V., Makarshin, L.L., Gribovskii, A.G., Yushchenko, D.Y., Sergeev, E.E., Zhizhina, E.G., Pai, Z.P., and Parmon, V.N., Chem. Eng. J., 2015, vol. 259, pp. 252–256.CrossRefGoogle Scholar
  8. 8.
    Lin, F.-L. and Xiong, D.-S., Chin. J. Spectrosc. Lab., 2003, vol. 20, no. 6, pp. 884–887.Google Scholar
  9. 9.
    Baerns, M., Hofmann, H., and Renken, A., in Lehrbuch der Technischen Chemie, Baerns, M., Fetting, F., Hofmann, H., Keim, W., and Onken, U., Eds. Stuttgart: Georg Thieme, 1999.Google Scholar
  10. 10.
    Horny, C., Kiwi-Minsker, L., and Renken, A., Chem. Eng. J., 2004, vol. 101, pp. 3–9.CrossRefGoogle Scholar
  11. 11.
    Karim, A., Bravo, J., and Datye, A., Appl. Catal., A, 2005, vol. 282, nos. 1–2, pp. 101–109.Google Scholar
  12. 12.
    Bellos, G.D. and Papayannakos, N.G., Catal. Today, 2003, vols. 79–80, pp. 349–355.Google Scholar
  13. 13.
    Andreev, D.V., Sergeev, E.E., Gribovskii, A.G., Makarshin, L.L., Prikhod’ko, S.A., Adonin, N.Yu., Pai, Z.P., and Parmon, V.N., Chem. Eng. J., 2017, vol. 330, pp. 899–905.CrossRefGoogle Scholar
  14. 14.
    Ermakova, A., in Promyshlennyi kataliz v lektsiyakh (Industrial Catalysts in Lectures), Noskov, A.S., Ed., Moscow: Kalvis, 2006, no. 4, pp. 67–114.Google Scholar
  15. 15.
    Hatta, M., Ito, T., Miki, M. and Okabe, T., J. Jpn. Oil Chem. Soc., 1966, vol. 15, pp. 215–220.CrossRefGoogle Scholar
  16. 16.
    McMillan, T., Tech. Rep.—SRI Int., 1991, vol 193, no. 6, pp. 1–46.Google Scholar
  17. 17.
    Longuet, C., Coq, B., Durand, R., Finiels, A., Geneste, P., and Mauvezin, M., J. Mol. Catal. A: Chem., 2005, vol. 234, nos. 1–2, pp. 59–62.Google Scholar
  18. 18.
    Zahedi, H., Amraei, S., and Biglari, M., Korean J. Chem. Eng., 2009, vol. 26, no. 6, pp. 1504–1511.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • D. V. Andreev
    • 1
    Email author
  • E. E. Sergeev
    • 1
  • L. L. Makarshin
    • 1
  • E. A. Ivanov
    • 1
  • A. G. Gribovskii
    • 1
    • 2
  • N. Yu. Adonin
    • 1
    • 2
  • Z. P. Pai
    • 1
  • V. N. Parmon
    • 1
    • 2
  1. 1.Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk National Research State UniversityNovosibirskRussia

Personalised recommendations