Catalysis in Industry

, Volume 11, Issue 1, pp 1–6 | Cite as

Selective Crystallization of Aluminophosphate Molecular Sieves with an AEL Structure

  • M. R. AgliullinEmail author
  • Z. R. Khairullina
  • A. V. Faizullin
  • A. I. Petrov
  • A. A. Badretdinova
  • V. P. Talzi
  • B. I. Kutepov


The effect of the temperature and exposure time of the starting aluminophosphate gels on their chemical and phase composition was studied. When the source of aluminum is its hydrated oxide (boehmite), gels with different contents of ammonium phosphate, undissolved boehmite, and amorphous aluminophosphate can be formed. The formation of a gel with dominant amorphous aluminophosphate allows selective crystallization of AlPO4-11 of high phase purity and ~100% crystallinity. The developed procedure for the preparation of highly dispersed aluminophosphate AlPO4-11 molecular sieves with these properties allows a transition to crystallization of silicoaluminophosphates SAPO-11—promising domestic catalysts for industrial hydroisomerization of n-paraffins in the production of Arctic diesel fuels and group III oils and isomerization of butenes.


zeolites aluminophosphate AlPO4-11 hydroisomerization of n-paraffins 



The reported study was funded by RFBR according to the research project no. 18-33-00077 mol_a.

The obtained materials were analyzed using the equipment of the Agidel Multiaccess Center at the Institute of Petrochemistry and Catalysis, Russian Academy of Sciences.


  1. 1.
    Cejka, J., Corma, A., and Zones, S., Zeolites and Catalysis: Synthesis, Reactions, and Applications, Weinheim: Wiley-VCH, 2010.CrossRefGoogle Scholar
  2. 2.
    Degnan, T.F., Stud. Surf. Sci. Catal., 2007, vol. 170, pp. 54–65.CrossRefGoogle Scholar
  3. 3.
    Moliner, M., Martínez, C., and Corma, A., Angew. Chem., Int. Ed. Engl., 2015, vol. 54, no. 12, pp. 3560–3579.CrossRefGoogle Scholar
  4. 4.
    Web of Science. Cited November 25, 2017.Google Scholar
  5. 5.
    US Patent 4440871, 1984.Google Scholar
  6. 6.
    Flanigen, E.M., Patton, R.L., and Wilson, S.T., Stud. Surf. Sci. Catal., 1988, vol. 37, pp. 13–37.CrossRefGoogle Scholar
  7. 7.
    Pastore, H.O., Coluccia, S., and Marchese, L., Annu. Rev. Mater. Res., 2005, vol. 35, pp. 351–395.CrossRefGoogle Scholar
  8. 8.
    Tian, P., Wei, Y., Ye., M., and Liu, Zh., ACS Catal., 2015, vol. 5, no. 3, pp. 1922–1938.CrossRefGoogle Scholar
  9. 9.
    Bértolo, R., Silva, J.M., Riberio, F., Maldonado-Hódar, F.J., Fernandes, F., and Martins, A., Appl. Catal., A, 2014, vol. 485, pp. 230–237.Google Scholar
  10. 10.
    Baerlocher, C., McCusker, L.B., and Olson, D.H., Atlas of Zeolite Framework Types, Amsterdam: Elsevier, 2007.Google Scholar
  11. 11.
    Deldari, H., Appl. Catal., A, 2005, vol. 293, pp. 1–10.Google Scholar
  12. 12.
    Wang, X., Gou, F., Wei, X., Liu, Z., Wei, Z., Guo, S., and Zhao, L., Korean J. Chem. Eng., 2016, vol. 33, no. 7, pp. 2034–2041.CrossRefGoogle Scholar
  13. 13.
    Zhu, Z., Chen, Q., Xie, Z., Yang, W., and Li, C., Microporous Mesoporous Mater., 2006, vol. 88, nos. 1–3, pp. 16–21.Google Scholar
  14. 14.
    Yang, S.-M., Lin, J.-Y., Guo, D.-H., and Liaw, S.-G., Appl. Catal., A, 1999, vol. 181, no. 1, pp. 113–122.Google Scholar
  15. 15.
    Yang, Z, Li, J., Liu, Y., and Liu, C., J. Energy Chem., 2017, vol. 26, no. 4, pp. 688–694.CrossRefGoogle Scholar
  16. 16.
    Chen, Z., Dong, Y., Jiang, S., Song, W., Lai, W., Yi, K., and Fang, W., J. Mater. Sci., 2017, vol. 52, no. 8, pp. 4460–4471.CrossRefGoogle Scholar
  17. 17.
    Huo, Q. and Xu, R., J. Chem. Soc., Chem. Commun., 1990, no. 10, pp. 783–784.Google Scholar
  18. 18.
    Ojo, A.F. and McCusker, L.B., Zeolites, 1991, vol. 11, no. 5, pp. 460–465.CrossRefGoogle Scholar
  19. 19.
    Park, M. and Komarneni, S., Microporous Mesoporous Mater., 1998, vol. 20, nos. 1–3, pp. 39–44.Google Scholar
  20. 20.
    Bandyopadhyay, M., Bandyopadhyay, R., Kubota, Y., and Sugi, Y., Chem. Lett., 2000, vol. 29, no. 9, pp. 1024–1025.CrossRefGoogle Scholar
  21. 21.
    Tapp, N.J., Milestone, N.B., and Bibby, D.M., Appl. Spectrosc., 1988, vol. 8, no. 3, pp. 183–188.Google Scholar
  22. 22.
    Kel’tsev, N.V., Osnovy adsorbtsionnoi tekhniki (Fundamentals of Adsorption Engineering), Moscow: Khimiya, 1984.Google Scholar
  23. 23.
    Gregg, S.J., Sing, K.S.W., and Salzberg, H.W., J. Electrochem. Soc., 1967, vol. 114, no. 11, p. 279C.CrossRefGoogle Scholar
  24. 24.
    Alfonzo, M., Goldwasser, J., López, C.M., Machado, F.J., Matjushin, M., Méndez, B., and Ramírez de Agudelo, M.M., J. Mol. Catal. A: Chem., 1995, vol. 98, no. 1, pp. 35–48.CrossRefGoogle Scholar
  25. 25.
    Huang, Y., Richer, R. and Kirby, C.W., J. Phys. Chem. B, 2003, vol. 107, no. 6, pp. 1326–1337.CrossRefGoogle Scholar
  26. 26.
    Balakrishnan, I. and Prasad, S., Appl. Catal., 1990, vol. 62, no. 1 pp. L7–L11.CrossRefGoogle Scholar
  27. 27.
    Zhang, B., Xu, J., Fan, F., Gou, Q., Tong, X., Yan, W., Yu, J., Deng, F., Li, C., and Xu, R., Microporous Mesoporous Mater., 2012, vol, 147, no. 1, pp. 212–221.CrossRefGoogle Scholar
  28. 28.
    Tong, X., Xu, J., Xin, L., Huang, P., Lu, H., Wang, C., Yan, W., Yu, J., Deng, F., Sun, H., and Xu, R., Microporous Mesoporous Mater., 2012, vol. 164, pp. 56–66.CrossRefGoogle Scholar
  29. 29.
    Cheng, T., Xu, J., Li, X., Li, Y., Zhang, B., Yan, W., Yu, J., Sun, H., Deng, F., and Xu, R., Microporous Mesoporous Mater., 2012, vol. 152, pp. 190–207.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. R. Agliullin
    • 1
    • 2
    Email author
  • Z. R. Khairullina
    • 2
  • A. V. Faizullin
    • 1
  • A. I. Petrov
    • 2
  • A. A. Badretdinova
    • 2
  • V. P. Talzi
    • 3
  • B. I. Kutepov
    • 1
    • 2
  1. 1.Institute of Petroleum Chemistry and Catalysis, Ufa Federal Research Center, Russian Academy of SciencesUfaRussia
  2. 2.Ufa State Petroleum Technological UniversityUfaRussia
  3. 3.Institute of Processing of Hydrocarbons, Siberian Branch, Russian Academy of SciencesOmskRussia

Personalised recommendations