Advertisement

Catalysis in Industry

, Volume 10, Issue 4, pp 321–327 | Cite as

Prereforming of Arctic Diesel Fuel into Syngas

  • A. V. Samoilov
  • V. A. KirillovEmail author
  • A. B. Shigarov
  • A. S. Brayko
  • D. I. Potemkin
  • T. B. Shoinkhorova
  • P. V. Snytnikov
  • S. I. Uskov
  • A. A. Pechenkin
  • V. D. Belyaev
  • V. A. Sobyanin
CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • 42 Downloads

Abstract

The possibility of using arctic low-sulfur diesel fuel for the production of syngas suitable for solid-oxide fuel cells (SOFSs) in a single stage via the prereforming reaction over Ni-MgO structured catalysts based on a highly porous cellular foam material (HPCFM) made of nickel is demonstrated. Catalysts with mass compositions (wt %) 10.7NiO–10MgO/HPCFM and 20NiO–10MgO/HPCFM are prepared, and their properties in the prereforming of arctic diesel fuel at 550°C are studied. The microstructure of the coating of these catalysts is studied via transmission electron microscopy (TEM) before and after the reaction. The resistance of these prereforming catalysts to carbonization is revealed to be the key factor influencing their stability under operation. The kinetic parameters of this reaction are determined. The obtained results could be helpful in creating power generation units based on fuel cells operating on arctic diesel fuel under the conditions of the Far North.

Keywords:

diesel syngas prereforming nickel magnesium oxide 

Notes

ACKNOWLEDGMENTS

This work was supported by the RF Ministry of Education and Science under the terms of Agreement no. 14.607.21.0149 (unique identification code RFMEFI60716X0149).

REFERENCES

  1. 1.
    Bakun, V.G., Yakovenko, R.E., Saliev, A.N., Sulima, S.I., Zemlyakov, N.D., and Nekroenko, S.V., Inzh. Vestn. Dona, 2017, no. 4. http://www.ivdon.ru/uploads/article/ pdf/IVD_136_Bakun_Yakovenko.pdf_798aa89f93.pdf. Cited October 14, 2018.Google Scholar
  2. 2.
    Burov, E.A., Studying the efficiency of functional additives to diesel fuels of different hydrocarbon composition, Cand. Sci. (Chem) Dissertation, Moscow: Gubkin Ross. State Univ. Oil Gas, 2015.Google Scholar
  3. 3.
    Kemalov, A.F., Kemalov, R.A., and Valiev, D.Z., Vestn. Kazan. Tekhnol. Univ., 2010, no. 10, pp. 645–647.Google Scholar
  4. 4.
    Kinzul’, A.P., Khandarkhaev, S.V., Pisarenko, N.O., Buryukin, F.A., and Tverdokhlebov, V.P., Mir Nefteprod., 2012, no. 8, pp. 7–11.Google Scholar
  5. 5.
    Agaev, S.G., Glazunov, A.M., Gul’tyaev, S.V., and Yakovlev, N.S., Uluchshenie nizkotemperaturnykh svoistv dizel’nykh topliv (Improving the Low-Temperature Properties of Diesel Fuels), Tyumen: TyumGNGU, 2009.Google Scholar
  6. 6.
    Zheng, Q., Janke, C., and Farrauto, R., Appl. Catal., B, 2014, vols. 160–161, pp. 525–533.Google Scholar
  7. 7.
    Alvarez-Galvan, M.C., Navarro, R.M., Rosa, F., Briceño, Y., Alvarez, F.G., and Fierro, J.L.G., Int. J. Hydrogen Energy, 2008, vol. 33, no. 2, pp. 652–663.CrossRefGoogle Scholar
  8. 8.
    Lu, Y., Chen, J., Liu, Y., Xue, Q., and He, M., J. Catal., 2008, vol. 254, no. 1, pp. 39–48.CrossRefGoogle Scholar
  9. 9.
    Granlund, M.Z., Jansson, K., Nilsson, M., Dawody, J., and Pettersson, L.J., Appl. Catal., B, 2015, vols. 172–173, pp. 145–153.Google Scholar
  10. 10.
    Shoynkhorova, T.B., Rogozhnikov, V.N., Simonov, P.A., Snytnikov, P.V., Salanov, A.N., Kulikov, A.V., Gerasimov, E.Y., Belyaev, V.D., Potemkin, D.I., and So-byanin, V.A., Mater. Lett., 2018, vol. 214, pp. 290–292.CrossRefGoogle Scholar
  11. 11.
    Esipova, E.V., Adsorption desulfurization of diesel gas condensate fuel, Cand. Sci. (Eng.) Dissertation, Moscow: Gubkin Ross. State Univ. Oil Gas, 2015.Google Scholar
  12. 12.
    Stambouli, A.B. and Traversa, E., Renewable Sustainable Energy Rev., 2002, vol. 6, no. 5, pp. 433–455.CrossRefGoogle Scholar
  13. 13.
    Kuznetsov, V.L., Usol’tseva, A.N., and Butenko, Y.V., Kinet. Catal., 2003, vol. 44, no. 5, pp. 726–734.CrossRefGoogle Scholar
  14. 14.
    Kuznetsov, V.L., Krasnikov, D.V., Schmakov, A.N., and Elumeeva, K.V., Phys. Status Solidi B, 2012, vol. 249, no. 12, pp. 2390–2394.CrossRefGoogle Scholar
  15. 15.
    Kirillov, V.A., Shigarov, A.B., Amosov, Yu.I., Be-lyaev, V.D., and Urusov, A.R., Theor. Found. Chem. Eng., 2015, vol. 49, no. 1, pp. 30–40.CrossRefGoogle Scholar
  16. 16.
    Kirillov, V.A., Kuzin, N.A., Kulikov, A.V., Fadeev, S.I., Shigarov, A.B., and Sobyanin, V.A., Theor. Found. Chem. Eng., 2003, vol. 37, no. 3, pp. 276–284.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Samoilov
    • 1
  • V. A. Kirillov
    • 1
    • 2
    Email author
  • A. B. Shigarov
    • 1
    • 2
  • A. S. Brayko
    • 1
  • D. I. Potemkin
    • 1
    • 3
  • T. B. Shoinkhorova
    • 1
  • P. V. Snytnikov
    • 1
    • 2
  • S. I. Uskov
    • 1
  • A. A. Pechenkin
    • 1
  • V. D. Belyaev
    • 1
    • 2
  • V. A. Sobyanin
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, NovosibirskRussia
  2. 2.UNICAT LLC,NovosibirskRussia
  3. 3.Novosibirsk State University, NovosibirskRussia

Personalised recommendations