Advertisement

Catalysis in Industry

, Volume 10, Issue 4, pp 313–320 | Cite as

Using Low-Temperature Molten Dialkylimidazole Salts in the Catalytic Reactions of Alkylation and Hydrodechlorination

  • A. S. KlimenkoEmail author
  • S. A. Prikhod’ko
  • A. M. Beskopyl’nyi
  • I. V. Tertishnikov
  • N. Yu. Adonin
CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY

Abstract

The possibility of preparing a mixture of 1,3-dialkylimidazole salts from commercially available reagents via multicomponent condensation is considered. The main factors affecting the yield of the target product, and the experimental data needed for scaling up the process, are discussed. It is shown that the prepared mixtures are close in some key properties (e.g., viscosity at different temperatures, heat capacity) to the pure salts. The possibility of using the prepared salts as solvents for catalytic hydrodechlorination and catalyst components for the alkylation of aromatic compounds is demonstrated.

Keywords:

ionic liquids polychlorinated aromatic compounds persistent organic pollutants condensation hydrodechlorination alkylation 

Notes

ACKNOWLEDGMENTS

This work was performed as part of a State Task for the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, project no. АААА-А17-117041710082-8.

REFERENCES

  1. 1.
    Jutz, F., Andanson, J.-M., and Baiker, A., Chem. Rev., 2011, vol. 111, no. 2, pp. 322–353.CrossRefGoogle Scholar
  2. 2.
    Olivier-Bourbigou, H., Magna, L., and Morvan, D., Appl. Catal., A, 2010, vol. 373, nos. 1–2, pp. 1–56.Google Scholar
  3. 3.
    Chatel, G., Pereira, J.F.B., Debbeti, V., Wang, H., and Rogers, R.D., Green Chem., 2014, vol. 16, no. 4, pp. 2051–2083.CrossRefGoogle Scholar
  4. 4.
    Kim, D.W., Song, C.E., and Chi, D.Y., J. Org. Chem., 2003, vol. 68, no. 11, pp. 4281–4285.CrossRefGoogle Scholar
  5. 5.
    Lim, H.K., Kim, D.R., Lee, K.I., Hwang, D.W., and Hwang, I.T., Biomass Bioenergy, 2016, vol. 94, pp. 31–38.CrossRefGoogle Scholar
  6. 6.
    Ionic Liquids in Organic Synthesis, Malhotra, S.V., Ed., Washington, DC: ACS, 2007.Google Scholar
  7. 7.
    Prikhod’ko, S.A., Adonin, N.Yu., and Parmon, V.N., Tetrahedron Lett., 2010, vol. 51, no. 17, pp. 2265–2268.CrossRefGoogle Scholar
  8. 8.
    Song, H., Yan, N., Fei, Z., Kilpin, K.J., Scopelliti, R., Li, X., and Dyson, P.J., Catal. Today, 2012, vol. 183, no. 1, pp. 172–177.CrossRefGoogle Scholar
  9. 9.
    Karpińska, M., Domańska, U., and Wlazło, M., J. Chem. Thermodyn., 2016, vol. 103, pp. 423–431.CrossRefGoogle Scholar
  10. 10.
    Dharaskar, S.A., Wasewar, K.L., Varma, M.N., Shende, D.Z., and Yoo, C., Arabian J. Chem., 2016, vol. 9, no. 4, pp. 578–587.CrossRefGoogle Scholar
  11. 11.
    Janssen, C.H.C., Sánchez, A., Witkamp, G.-J., and Kobrak, M.N., ChemPhysChem, 2013, vol. 14, no. 16, pp. 3806–3813.CrossRefGoogle Scholar
  12. 12.
    Goossens, K., Lava, K., Bielawski, C.W., and Binnemans, K., Chem. Rev., 2016, vol. 116, no. 8, pp. 4643–4807.CrossRefGoogle Scholar
  13. 13.
    Hallett, J.P. and Welton, T., Chem. Rev., 2011, vol. 111, no. 5, pp. 3508–3576.CrossRefGoogle Scholar
  14. 14.
    Welton, T., Chem. Rev., 1999, vol. 99, no. 8, pp. 2071–2084.CrossRefGoogle Scholar
  15. 15.
    Zhao, D., Wu, M., Kou, Y., and Min, E., Catal. Today, 2002, vol. 74, nos. 1–2, pp. 157–189.Google Scholar
  16. 16.
    Burrell, A.K., Del Sesto, R.E., Baker, S.N., McCleskey, T.M., and Baker, G.A., Green Chem., 2007, vol. 9, no. 5, pp. 449–454.CrossRefGoogle Scholar
  17. 17.
    Holbrey, J.D., Reichert, W.M., Swatloski, R.P., Broker, G.A., Pitner, W.R., Seddon, K.R., and Rogers, R.D., Green Chem., 2002, vol. 4, no. 5, pp. 407–413.CrossRefGoogle Scholar
  18. 18.
    Cassol, C.C., Ebeling, G., Ferrera, B., and Dupont, J., Adv. Synth. Catal., 2006, vol. 348, nos. 1–2, pp. 243–248.Google Scholar
  19. 19.
    US Patent 20 080 045 723, 2008.Google Scholar
  20. 20.
    Muthyala, M.K., Choudhary, S., Pandey, K., Shelke, G.M., Jha, M., and Kumar, A., Eur. J. Org. Chem., 2014, vol. 2014, no. 11, pp.2365–2370.CrossRefGoogle Scholar
  21. 21.
    Petit, S., Azzouz, R., Fruit, C., Bischoff, L., and Marsais, F., Tetrahedron Lett., 2008, vol. 49, no. 22, pp. 3663–3665.CrossRefGoogle Scholar
  22. 22.
    Prikhod'ko, S.A., Adonin, N.Yu., and Parmon, V.N., Russ. Chem. Bull., 2013, vol. 62, no. 1, pp. 33–38.CrossRefGoogle Scholar
  23. 23.
    US Patent 9 328 037, 2014.Google Scholar
  24. 24.
    Jpn. Patent 2 001 122 885, 1999.Google Scholar
  25. 25.
    Schaub, T., Backes, M., and Radius, U., Organometallics, 2006, vol. 25, no. 17, pp. 4196–4206.CrossRefGoogle Scholar
  26. 26.
    Schaub, T. and Radius, U., Chem.-Eur. J., 2005, vol. 11, no. 17, pp. 5024–5030.CrossRefGoogle Scholar
  27. 27.
    Scott, N.M., Dorta, R., Stevens, E.D., Correa, A., Cavallo, L., and Nolan, S.P., J. Am. Chem. Soc., 2005, vol. 127, no. 10, pp. 3516–3526.CrossRefGoogle Scholar
  28. 28.
    Jpn. Patent 2008074740, 2008.Google Scholar
  29. 29.
    Depuydt, D., van den Bossche, A., Dehaen, W., and Binnemans, K., RSC Adv., 2016, vol. 6, no. 11, pp. 8848–8859.CrossRefGoogle Scholar
  30. 30.
    WO Patent 2 002 094 883, 2001.Google Scholar
  31. 31.
    WO Patent 2 011 056 924, 2009.Google Scholar
  32. 32.
    WO Patent 2 009 074 535, 2007.Google Scholar
  33. 33.
    Dupont, J., Consorti, C.S., Suarez, P.A.Z., and Souza, R.F., D, Org. Synth. Collect., 2004, vol. 10, p. 184.Google Scholar
  34. 34.
    Arduengo III, A.J., Krafczyk, R., Schmutzler, R., Craig, H.A., Goerlich, J.R., Marshall, W.J., and Unverzagt, M., Tetrahedron, 1999, vol. 55, no. 51, pp. 14523–14534.CrossRefGoogle Scholar
  35. 35.
    US Patent 5 077 414, 1991.Google Scholar
  36. 36.
    Clare, B., Sirwardana, A., and MacFarlane, D.R., in Ionic Liquids, Kirchner, B. Ed., New York: Springer, 2009, pp. 1–40.Google Scholar
  37. 37.
    Zhang, S., Sun, N., He, X., Lu, X., Zhang, X., Lu, X., and Zhang, X., J. Phys. Chem. Ref. Data, 2006, vol. 35, no. 4, pp. 1475–1517.CrossRefGoogle Scholar
  38. 38.
    Fendt, S., Padmanabhan, S., Blanch, H.W., and Prausnitz, J.M., J. Chem. Eng. Data, 2011, vol. 56, no. 1, pp. 31–34.CrossRefGoogle Scholar
  39. 39.
    Yamamuro, O., Minamimoto, Y., Inamura, Y., Hayashi, S., and Hamaguchi, H., Chem. Phys. Lett., 2006, vol. 423, nos. 4–6, pp. 371–375.Google Scholar
  40. 40.
    Machida, H., Taguchi, R., Sato, Y., and Smith, J.R.L., J. Chem. Eng. Data, 2011, vol. 56, no. 4, pp. 923–928.CrossRefGoogle Scholar
  41. 41.
    Garrido, R., Hernández-Montes, P.S., Gordillo, Á., Gómez-Sal, P., López-Mardomingo, C., and de Jesús, E., Organometallics, 2015, vol. 34, no. 10, pp. 1855–1863.CrossRefGoogle Scholar
  42. 42.
    Chelucci, G. and Figus, S., J. Mol. Catal. A: Chem., 2014, vol. 393, pp. 191–209.CrossRefGoogle Scholar
  43. 43.
    Weidauer, M., Irran, E., Someya, C.I., Haberberger, M., and Enthaler, S., J. Organomet. Chem., 2013, vol. 729, pp. 53–59.CrossRefGoogle Scholar
  44. 44.
    Gryglewicz, S. and Piechocki, W., Chemosphere, 2011, vol. 83, no. 3, pp. 334–339.CrossRefGoogle Scholar
  45. 45.
    Lokteva, E.S., Kachevskii, S.A., Turakulova, A.O., Golubina, E.V., Lunin, V.V., Ermakov, A.E., Uimin, M.A., and Mysik, A.A., Russ. J. Phys. Chem. A, 2009, vol. 83, no. 8, pp. 1300–1306.CrossRefGoogle Scholar
  46. 46.
    Cecilia, J.A., Infantes-Molina, A., and Rodríguez-Castellón, E., J. Hazard. Mater., 2015, vol. 296, pp. 112–119.CrossRefGoogle Scholar
  47. 47.
    Prikhod’ko, S.A., Adonin, N.Yu., and Parmon, V.N., Russ. Chem. Bull., 2009, vol. 58, no. 11, pp. 2304–2310.CrossRefGoogle Scholar
  48. 48.
    Thomas, C.A., Anhydrous Aluminum Chloride in Organic Chemistry, New York: Reinhold, 1941.Google Scholar
  49. 49.
    Qiao, C.-Z., Zhang, Y.-F., Zhang, J.-C., and Li, C.-Y., Appl. Catal., A, 2004, vol. 276, nos. 1–2, pp. 61–66.Google Scholar
  50. 50.
    Qiao, C., Cai, Y., and Guo, Q., Front. Chem. Eng. China, 2008, vol. 2, no. 3, pp. 346–352.CrossRefGoogle Scholar
  51. 51.
    Zhao, Z.-K., Qiao, W.-H., Li, Z.-S., Wang, G.-R., and Cheng, L.-B., J. Mol. Catal. A: Chem., 2004, vol. 222, nos. 1–2, pp. 207–212.Google Scholar
  52. 52.
    Zhao, Z., Yuan, B., Qiao, W., Li, Z., Wang, G., and Cheng, L., J. Mol. Catal. A: Chem., 2005, vol. 235, nos. 1–2, pp. 74–80.Google Scholar
  53. 53.
    Jia, L.-J., Wang, Y.-Y., Chen, H., Shan, Y.-K., and Dai, L.-Y., React. Kinet. Catal. Lett., 2005, vol. 86, no. 2, pp. 267–273.CrossRefGoogle Scholar
  54. 54.
    Xin, H., Wu, Q., Han, M., Wang, D.Z., and Jin, Y., Appl. Catal., A, 2005, vol. 292, pp. 354–361.Google Scholar
  55. 55.
    He, Y., Wan, C., Zhang, Q., Zhan, X., Cheng, D.-G., and Chen, F., RSC Adv., 2015, vol. 5, no. 76, pp. 62241–62247.CrossRefGoogle Scholar
  56. 56.
    RF Patent 2 019 560, 1994.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. S. Klimenko
    • 1
    • 2
    Email author
  • S. A. Prikhod’ko
    • 1
  • A. M. Beskopyl’nyi
    • 1
    • 2
  • I. V. Tertishnikov
    • 2
  • N. Yu. Adonin
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.Volgograd Branch, Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of SciencesVolgogradRussia

Personalised recommendations