Advertisement

Catalysis in Industry

, Volume 10, Issue 4, pp 294–300 | Cite as

Reduction of Menthone with Isopropanol in the Presence of Palladium on Sibunit (ICT-3-31)

  • A. A. Philippov
  • A. M. ChibiryaevEmail author
CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • 7 Downloads

Abstract

The catalytic properties of the industrial “palladium on sibunit” catalyst (ICT-3-31, 0.5 wt % Pd) were studied in the reduction of menthone into menthol. Menthone was reduced both at 250 and 350°C using isopropanol as an H-donor under the conditions of the hydrogen transfer reaction (HTR). For comparison, a noncatalytic reaction was performed under the same conditions. At 350°C the conversion of menthone was the same (61–62%) in the presence of the catalyst and without it. In the reaction with the catalyst, the selectivity on the desired product menthol decreased considerably (from 98% down to 23%), and the amount of the by-products increased (from 2 up to 77% based on changed menthone). When the temperature of the catalytic reaction was lowered to 250°C, the reduction selectivity increased to 42%, but the conversion of menthone decreased to 10%. All the products of menthone conversion were identified and pathways of their formation suggested. At 250–350°C the carbon support sibunit catalyzed the dehydration of menthone, which hindered the satisfactory yields of the target alcohol. Other side reactions catalyzed by ICT-3-31 were dehydrogenation into p-menthenes and their further aromatization resulted in the formation of substituted benzenes—p-cymene and thymol. ICT-3-31 can be effectively used in HTR, if more reactive organic substrates are involved in the reaction below 200–250°C or stronger H-donors are applied.

Keywords:

palladium on sibunit hydrogen transfer reaction reduction of ketones menthone menthol dehydration dehydrogenation 

Notes

ACKNOWLEDGMENTS

This study was performed under the state assignment at the Institute of Catalysis, Siberian Branch, Russian Academy of Sciences (project no. 0303-2016-0001).

REFERENCES

  1. 1.
    Wang, D. and Astric, D., Chem. Rev., 2015, vol. 115, no. 13, pp. 6621–6686.CrossRefGoogle Scholar
  2. 2.
    Alonso, F., Riente, P., and Yus, M., Acc. Chem. Res., 2011, vol. 44, no. 5, pp. 379–391.CrossRefGoogle Scholar
  3. 3.
    Semikolenov, V.A., Russ. J. Appl. Chem., 1997, vol. 70, no. 5, pp. 748–758.Google Scholar
  4. 4.
    Boldyreva, M.E., Development of a catalytic process for the synthesis of 2,6-dimethylphenol over a palladium/carbon catalyst, Cand. Sci. (Chem) Dissertation, Novosibirsk: Boreskov Inst. Catal. SO RAN, 1993.Google Scholar
  5. 5.
    Patent RU 99120675, 2001.Google Scholar
  6. 6.
    Patent RU 2181004, 2002.Google Scholar
  7. 7.
    Németh, J., Kiss, A., and Hell, Z., React. Kinet., Mech. Catal., 2014, vol. 111, no. 1, pp. 115–121.CrossRefGoogle Scholar
  8. 8.
    Verho, O., Nagendiran, A., Tai, C.-W., Johnston, E.V., and Bäckvall, J.-E., ChemCatChem, 2014, vol. 6, no. 1, pp. 205–211.CrossRefGoogle Scholar
  9. 9.
    Hutchings, M. and Wirth, T., Synlett, 2016, vol. 27, no. 12, pp. 1832–1835.CrossRefGoogle Scholar
  10. 10.
    Zhu, K., Hao, J.-H., Zhang, C.-P., Zhang, J., Feng, Y., and Qin, H.-L., RSC Adv., 2015, vol. 5, no. 15, pp. 11132–11135.CrossRefGoogle Scholar
  11. 11.
    Abarca, B., Adam, R., and Ballesteros, R., Org. Biomol. Chem., 2012, vol. 10, no. 9, pp. 1826–1833.CrossRefGoogle Scholar
  12. 12.
    Feng, J., Xiong, W., Jia, Y., Wang, J., Liu, D., and Qin, R., Adv. Mater. Res., 2011, vols. 287–290, p. 1749–1752.Google Scholar
  13. 13.
    Verho, O., Nagendiran, A., Johnston, E.V., Tai, C.-W., and Bäckvall, J.-E., ChemCatChem, 2013, vol. 5, no. 2, pp. 612–618.CrossRefGoogle Scholar
  14. 14.
    Scholz, D., Aellig, C., and Hermans, I., ChemSusChem, 2014, vol. 7, no. 1, pp. 268–275.CrossRefGoogle Scholar
  15. 15.
    Jaatinen, S. and Karinen, R., Top. Catal., 2017, vol. 60, nos. 17–18, pp. 1473–1481.Google Scholar
  16. 16.
    Hach, V., J. Org. Chem., 1973, vol. 58, no. 2, pp. 293–299.CrossRefGoogle Scholar
  17. 17.
    Baratta, W., Ballico, M., Del Zotto, A., Siega, K., Magnolia, S., and Rigo, P., Chem.-Eur. J., 2008, vol. 14, no. 8, pp. 2557–2563.CrossRefGoogle Scholar
  18. 18.
    Putignano, E., Bossi, G., Rigo, P., and Baratta, W., Organometallics, 2012, vol. 31, no. 3, pp. 1133–1142.CrossRefGoogle Scholar
  19. 19.
    Ganesamoorthy, S., Jerome, P., Shanmugasundaram, K., and Karvembu, R., RSC Adv., 2014, vol. 4, no. 53, pp. 27955–27962.CrossRefGoogle Scholar
  20. 20.
    Corma, A., Ródenas, T., and Sabater, M.J., Chem. - Eur. J., 2010, vol. 16, no. 1, pp. 254–260.CrossRefGoogle Scholar
  21. 21.
    Handbook of Essential Oils. Science, Technology, and Applications, Başer, K.H.C., and Buchbauer, G., Eds., Boca Raton, FL: CRC Press. 2016.Google Scholar
  22. 22.
    Surburg, H. and Panten, J., Common Fragrance and Flavor Materials. Preparation, Properties and Uses, Weinheim: Wiley-VCH, 2016.CrossRefGoogle Scholar
  23. 23.
    Yori, J.C., Manuale, D.L., Marchi, A.J., and Grau, J.M., Appl. Catal., A, 2004, vol. 275, nos. 1–2, pp. 221–226.Google Scholar
  24. 24.
    Tungler, A., Máthé, T., Bende, Z., and Petro, J., Appl. Catal., 1985, vol. 19, no. 2, pp. 365–374.CrossRefGoogle Scholar
  25. 25.
    Kukula, P. and Červený, L., Appl. Catal., A, 2000, vol. 193, nos. 1–2, pp. 285–290.Google Scholar
  26. 26.
    Ravichandran, R., J. Mol. Catal. A: Chem., 2006, vol. 256, nos. 1–2, pp. 216–218.Google Scholar
  27. 27.
    Hedin- Dahlström, J., Shoravi, S., Wikman, S., and Nicholls, I.A., Tetrahedron: Asymmetry, 2004, vol. 15, no. 15, pp. 2431–2436.Google Scholar
  28. 28.
    Ravichandran, R. and Divakar, S., J. Mol. Catal., 1994, vol. 93, no. 3, pp. L247–L251.CrossRefGoogle Scholar
  29. 29.
    Gubin, S.P., Dokl. Akad. Nauk, 1995, vol. 345, no. 4, pp. 490–492.Google Scholar
  30. 30.
    Gromov, N.V., Ayupov, A.B., Aymonier, C., Agabekov, V.E., and Taran, O.P., Zh. Sib. Fed. Univ., Khim., 2014, vol. 7, no. 4, pp. 597–609.Google Scholar
  31. 31.
    Nikulshin, P.A., Sal’nikov, V.A., Zhilkina, E.O., and Pimerzin, A.A., Catal. Ind., 2014, vol. 6, no. 4, pp. 338–347.CrossRefGoogle Scholar
  32. 32.
    Kamitanaka, T., Matsuda, T., and Harada, T., Tetrahedron, 2007, vol. 63, no. 6, pp. 1429–1434.CrossRefGoogle Scholar
  33. 33.
    Fernandes, C., Catrinescu, C., Castilho, P., Russo, P.A., Carrott, M.R., and Breen, C., Appl. Catal., A, 2007, vol. 318, pp. 108–120.Google Scholar
  34. 34.
    Buhl, D., Weyrich, P.A., Sachtler, W.M.H., and Hölde-rich, W.F., Appl. Catal., A, 1998, vol. 171, no. 1, pp. 1–11.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations