Catalysis in Industry

, Volume 10, Issue 4, pp 335–343 | Cite as

Modifying Zeolite ZSM-5 to Increase the Yield of Light Olefins in Cracking Feedstocks of Petroleum and Vegetable Origin

  • V. P. DoroninEmail author
  • P. V. LipinEmail author
  • O. V. PotapenkoEmail author
  • V. V. VysotskiiEmail author
  • T. I. GulyaevaEmail author
  • T. P. SorokinaEmail author


The effect modifying the HZSM-5 zeolite contained in a bizeolite catalyst has on the conversion of hydrotreated vacuum gas oil, vegetable oil, and a vacuum gas oil–vegetable oil mixture under conditions of catalytic cracking is investigated. It is found that modification lowers both the specific surface area and the volume of the meso- and micropores of HZSM-5 zeolite; the higher the phosphorus content, the greater the reduction in the main characteristics of the pore structure of the zeolite. A drop in the total acidity of P/HZSM-5 and a quantitative redistribution of weak and medium-strength acid sites are also observed. Catalytic tests of the zeolites in the cracking process show that phosphorus modification helps increase the total yield of propane–propylene and butane–butylene fractions with high olefin contents. Alkaline treatment of HZSM-5 zeolite with a high SiO2/Al2O3 ratio facilitates the extraction of silicon and increases the specific surface area of mesopores considerably. In addition, weakening of the strong acid sites of the zeolite and/or a change in the accessibility of these sites due to the partial removal of silicon is observed.


catalytic cracking bizeolite catalyst phosphorus vacuum gas oil sunflower oil 



This work was performed as part of a State Task for the Institute of Hydrocarbon Processing, Siberian Branch, Russian Academy of Sciences under the Program for Basic Research of the State Academies of Sciences, 2013–2020, directive V.47, project no. V.47.1.3, state registration in the Unified State Information System for Recording the Results of Research and Development Works no. AAAA-A17-117021450099- 9).


  1. 1.
    Bortnovsky, O., Sazama, P., and Wichterlova, B., Appl. Catal., A, 2005, vol. 287, no. 2, pp. 203–213.Google Scholar
  2. 2.
    Bezouhanova, C.P., Dimitrov, Chr., Nenova, V., Dimitrov, L., and Lechert, H., Appl. Catal., 1985, vol. 19, no. 1, pp. 101–108.CrossRefGoogle Scholar
  3. 3.
    Romero, M.D., Calles, J.A., Rodríguez, A., and de Lucas, A., Microporous Mater., 1997, vol. 9, nos. 5–6, pp. 221–228.Google Scholar
  4. 4.
    Gao, X., Tang, Z., Zhang, H., Ji, D., Lu, G., Wang, Z., and Tan, Z., J. Mol. Catal. A: Chem., 2010, vol. 325, nos. 1–2, pp. 36–39.Google Scholar
  5. 5.
    Blasco, T., Corma, A., and Martínez-Triguero, J., J. Catal., 2006, vol. 237, no. 2, pp. 267–277.CrossRefGoogle Scholar
  6. 6.
    Rahimi, N. and Karimzadeh, R., Appl. Catal., A, 2011, vol. 398, nos. 1–2, pp. 1–17.Google Scholar
  7. 7.
    Ding, J., Wang, M., Peng, L., Xue, N., Wang, Y., and He, M.-Y., Appl. Catal., A, 2015, vol. 503, pp. 147–155.Google Scholar
  8. 8.
    Altynkovich, E.O., Potapenko, O.V., Sorokina, T.P., Doronin, V.P., Gulyaeva, T.I., and Talzi, V.P., Pet. Chem., 2017, vol. 57, no. 3, pp. 215–221.CrossRefGoogle Scholar
  9. 9.
    Xue, N., Chen, X., Nie, L., Guo, X., Ding, W., Chen, Y., Gu, M., and Xie, Z., J. Catal., 2007, vol. 248, no. 1, pp. 20–28.CrossRefGoogle Scholar
  10. 10.
    Caeiro, G., Magnoux, P., Lopes, J.M., Ribeiro, F.R., Menezes, S.M.C., Costa, A.F., and Cerqueira, H.S., Appl. Catal., A, 2006, vol. 314, no. 2, pp. 160–171.Google Scholar
  11. 11.
    Wang, X., Zhao, Z., Xu, C., Duan, A., Li, Z., and Guiyuan, J., J. Rare Earths, 2007, vol. 25, no. 3, pp. 321–328.CrossRefGoogle Scholar
  12. 12.
    Awayssa, O., Al-Yassir, N., Aitani, A., and Al-Khattaf, S., Appl. Catal., A, 2014, vol. 477, pp. 172–183.Google Scholar
  13. 13.
    Lü, Q., Lin, X., Wang, L., Gao, J., and Bao, X., Catal. Commun., 2016, vol. 83, pp. 31–34.CrossRefGoogle Scholar
  14. 14.
    Han, D., Sun, N., Liu, J., Li, C., Shan, H., and Yang, C., J. Energy Chem., 2014, vol. 23, no. 4, pp. 519–526.CrossRefGoogle Scholar
  15. 15.
    Jung, J.S., Park, J.W., and Seo, G., Appl. Catal., A, 2005, vol. 288, nos. 1–2, pp. 149–157.Google Scholar
  16. 16.
    Silaghi, M.-C., Chizallet, C., and Raybaud, P., Microporous Mesoporous Mater., 2014, vol. 191, pp. 82–96.CrossRefGoogle Scholar
  17. 17.
    Melero, J.A., Clavero, M.M., Calleja, G., García, A., Miravalles, R., and Galindo, T., Energy Fuels, 2010, vol. 24, no. 1, pp. 707–717.CrossRefGoogle Scholar
  18. 18.
    Bielansky, P., Weinert, A., Schönberger, C., and Reichhold, A., Fuel Process. Technol., 2011, vol. 92, no. 12, pp. 2305–2311.CrossRefGoogle Scholar
  19. 19.
    Shan, H., Liu, Y., Chen, X., and Yang, C., Shiyou Xuebao, Shiyou Jiagong/Acta Pet. Sin., Pet. Process. Sect., 2015, vol. 31, no. 2, pp. 460–467.Google Scholar
  20. 20.
    Lovás, P., Hudec, P., Hadvinová, M., and Ház, A., Fuel Process. Technol., 2015, vol. 134, pp. 223–230.CrossRefGoogle Scholar
  21. 21.
    Abbasov, V., Mammadova, T., Aliyeva, N., Abbasov, M., Movsumov, N., Joshi, A., Lvov, Y., and Abdullayev, E., Fuel, 2016, vol. 181, pp. 55–63.CrossRefGoogle Scholar
  22. 22.
    Doronin, V.P., Sorokina, T.P., Potapenko, O.V., Lipin, P.V., Dmitriev, K.I., Korotkova, N.V., and Gur’evskikh, S.Yu., Katal. Prom-sti, 2016, vol. 16, no. 6, pp. 69–74.Google Scholar
  23. 23.
    Doronin, V.P., Lipin, P.V., Potapenko, O.V., Zhuravlev, Ya.E., and Sorokina, T.P., Khim. Interes. Ust. Razv., 2017, vol. 25, no. 4, pp. 385–392.Google Scholar
  24. 24.
    Karnaukhov, A.P., Adsorbtsiya. Tekstura dispersnykh i poristykh materialov (Adsorption. Texture of Dispersed and Porous Materials), Novosibirsk: Nauka. Sib. Predpriyatie RAN, 1999.Google Scholar
  25. 25.
    Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing, K.S.W., Pure Appl. Chem., 2015, vol. 87, nos. 9–10, pp. 1051–1069.Google Scholar
  26. 26.
    Zhu, X., Lobban, L.L., Mallinson, R.A., and Resasco, D.E., J. Catal., 2010, vol. 271, no. 1, pp. 88–98.CrossRefGoogle Scholar
  27. 27.
    Jiang, G., Zhang, L., Zhao, Z., Zhou, X., Duan, A., Xu, C., and Gao, J., Appl. Catal., A, 2008, vol. 340, no. 2, pp. 176–182.Google Scholar
  28. 28.
    Guisnet, M., Gnep, N.S., Aittaleb, D., and Doyemet, Y.J., Appl. Catal., A, 1992, vol. 87, no. 2, pp. 255–270.Google Scholar
  29. 29.
    Katikaneni, S.P.R., Adjaye, J.D., Idem, R.O., and Bakhshi, N.N., Ind. Eng. Chem. Res., 1996, vol. 35, no. 10, pp. 3332–3346.CrossRefGoogle Scholar
  30. 30.
    Benson, T.J., Hernandez, R., French, W.T., Alley, E.G., and Holmes, W.E., J. Mol. Catal. A: Chem., 2009, vol. 303, nos. 1–2, pp. 117–123.Google Scholar
  31. 31.
    Ong, Y.K. and Bhatia, S., Energy, 2010, vol. 35, no. 1, pp. 111–119.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Hydrocarbon Processing, Siberian Branch, Russian Academy of Sciences, OmskRussia

Personalised recommendations