Advertisement

Catalysis in Industry

, Volume 10, Issue 4, pp 328–334 | Cite as

Studying the Three-Phase Hydrogenation of Nitrobenzene to Aniline in the Presense of a Ruthenium Catalyst

  • V. Yu. DoludaEmail author
  • A. E. Filatova
  • E. M. Sul’man
  • V. G. Matveeva
  • S. P. Mikhailov
  • A. I. Sidorov
  • Yu. Yu. Kosivtsov
CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • 6 Downloads

Abstract

The catalytic hydrogenation of nitrobenzene (NB) is an important technological stage in the production of aniline (AN). The catalytic behavior of hypercrosslinked polystyrene based ruthenium catalyst 3%Ru/MN270 in the three-phase hydrogenation of NB to AN is considered in this work. The following parameters are varied: 0.12 to 0.24 mol/L of NB; 1.11 × 10−4 to 11.12 × 10−4 mol/L of catalyst; temperatures of 160 to 190°C; and partial hydrogen pressures of 0.113 to 1.013 MPa. The optimum process parameters are determined to ensure 98% selectivity toward aniline with 97% conversion of nitrobenzene.

Keywords:

nitrobenzene three-phase hydrogenation aniline ruthenium hypercrosslinked polystyrene 

Notes

ACKNOWLEDGMENTS

This work was financially supported by the Russian Foundation for Basic Research (project no. 17-08-00659A).

REFERENCES

  1. 1.
    Shokouhimehr, M., Catalysts, 2015, vol. 5, no. 2, pp. 534–560.CrossRefGoogle Scholar
  2. 2.
    Blaser, H.-U., Malan, C., Pugin, B., Spindler, F., Steiner, H., and Studer, M., Adv. Synth. Catal., 2003, vol. 345, nos. 1–2, pp. 103–151.Google Scholar
  3. 3.
    Wu, H., Zhuo, L., He, Q., Liao, X., and Shi, B., Appl. Catal., A, 2009, vol. 366, no. 1, pp. 44–56.Google Scholar
  4. 4.
    Haber, F., Z. Elektrochem., 1898, vol. 4, pp. 506–514.CrossRefGoogle Scholar
  5. 5.
    Gelder, E.A., Jackson, S.D., and Lok, C.M., Chem. Commun., 2005, vol. 41, no. 4, pp. 522–524.CrossRefGoogle Scholar
  6. 6.
    Polotnyuk, O.-V.Ya., Katal. Prom-sti, 2013, no. 4, pp. 55–80.Google Scholar
  7. 7.
    Verho, O., Gustaffson, K.P.J., Nagendiran, A., Tai, C.-W., and Bäckvall, J.-E., ChemCatChem, 2014, vol. 6, no. 11, pp. 3153–3159.CrossRefGoogle Scholar
  8. 8.
    Westerhaus, F.A., Jagadeesh, R.V., Wienhöfer, G., Pohl, M.M., Radnik, J., Surkus, A.E., Rabeah, J., Junge, K., Junge, H., Nielsen, M., Brückner, A., and Beller, M., Nat. Chem., 2013, vol. 5, no. 6, pp. 527–543.CrossRefGoogle Scholar
  9. 9.
    Sangeetha, P., Seetharamulu, P., Shanthi, K.., Narayanan, S., and Rama Rao, K.S., J. Mol. Catal. A: Chem., 2007, vol. 273, nos. 1–2, pp. 244–249.Google Scholar
  10. 10.
    Rahaim, R.J. and Maleczka, R.E., Org. Lett., 2005, vol. 7, no. 22, pp. 5087–5090.CrossRefGoogle Scholar
  11. 11.
    Shil, A.K. and Das, P., Green Chem., 2013, vol. 15, no. 12, pp. 3421–3428.CrossRefGoogle Scholar
  12. 12.
    Schabel, T., Belger, C., and Plietker, B., Org. Lett., 2013, vol. 15, no. 11, pp. 2858–2861.CrossRefGoogle Scholar
  13. 13.
    Copéret, C., Chabanas, M., Petroff Saint-Arroman, R., and Basset, J.M., Angew. Chem., Int. Ed. Engl., 2003, vol. 42, no. 2, pp. 156–181.CrossRefGoogle Scholar
  14. 14.
    Shokouhimehr, M., Kim, J.-H., and Lee, Y.-S., Synlett, 2006, vol. 4, no. 4, pp. 618–620.Google Scholar
  15. 15.
    Janssen, M., Müller, C., and Vogt, D., Green Chem., 2011, vol. 13, no. 9, pp. 2247–2257.CrossRefGoogle Scholar
  16. 16.
    Kim, J.-H., Kim, J.-W., Shokouhimehr, M., and Lee, Y.-S., J. Org. Chem., 2005, vol. 70, no. 17, pp. 6714–6720.CrossRefGoogle Scholar
  17. 17.
    Höller, V., Wegricht, D., Yuranov, I., Kiwi-Minsker, L., and Renken, A., Chem. Eng. Technol., 2000, vol. 23, no. 3, pp. 251–255.CrossRefGoogle Scholar
  18. 18.
    Rakitin, M.Yu., Doluda, V.Yu., Tereshchenkov, A.Yu., Demidenko, G.N., Lakina, N.V., Matveeva, V.G., Sul’man, M.G., and Sul’man, E.M., Catal. Ind., 2015, vol. 7, no. 1, pp. 1–5.CrossRefGoogle Scholar
  19. 19.
    Tobe, M.L. and Burgess, J., Inorganic Reaction Mechanisms, Harlow, UK: Longman, 1999.Google Scholar
  20. 20.
    Zhao, F., Ikushima, Y., and Arai, M., J. Catal., 2004, vol. 224, no. 2, pp. 479–483.CrossRefGoogle Scholar
  21. 21.
    Li, C.-H., Yu, Z.-X., Yao, K.-F., Ji, S.-F, and Liang, J., J. Mol. Catal. A: Chem., 2005, vol. 226, no. 1, pp. 101–105.CrossRefGoogle Scholar
  22. 22.
    Makosch, M., Hydrogenation over supported noble metal catalysts: From characterization to design, Dr. Sc. ETH Zürich Dissertation, Augsburg: ETH Zürich, 2012.Google Scholar
  23. 23.
    Evangelisti, C., Aronica, L.A., Botavina, M., Martra, G., Battocchio, C., and Polzonetti, G., J. Mol. Catal. A: Chem., 2013, vol. 366, pp. 288–293.CrossRefGoogle Scholar
  24. 24.
    Polshettiwar, V., Len, C., and Fihri, A., Coord. Chem. Rev., 2009, vol. 253, nos. 21–22, pp. 2599–2626.Google Scholar
  25. 25.
    Toebes, M.L., van Dillen, J.A., and de Jong, K.P., J. Mol. Catal. A: Chem., 2001, vol. 173, nos. 1–2, pp. 75–98.Google Scholar
  26. 26.
    Matveeva, V.G., Valetskii, P.M., Sulman, M.G., Bronshtein, L.M., Sidorov, A.I., Doluda, V.Yu., Gavrilenko, A.V., Nikoshvili, L.Zh., Bykov, A.V., Grigorjev, M.E., and Sulman, E.M., Catal. Ind., 2011, vol. 3, no. 3, pp. 260–270.CrossRefGoogle Scholar
  27. 27.
    Sulman, E., Matveeva, V., Doluda, V., L. Nikoshvili, L., Bykov, A., Demidenko, G., and Bronstein, L., Stud. Surf. Sci. Catal., 2010, vol. 175, pp. 153–160.CrossRefGoogle Scholar
  28. 28.
    Sulman, M., Doluda, V., Grigoryev, M., Manaenkov, O., Filatova, A., Molchanov, V., Sidorov, A., Bykov, A., Shkileva, I., Sulman, A., Stein, B., and Matveeva, V., Bull. Chem. React. Eng. Catal., 2015, vol. 10, no. 3, pp. 313–323.CrossRefGoogle Scholar
  29. 29.
    Tsyurupa, M.P., Tarabaeva, O.G., Pastukhov, A.V., and Davankov, V.A., Int. J. Polym. Mater., 2003, vol. 52, no. 5, pp. 403–414.CrossRefGoogle Scholar
  30. 30.
    Pavlova, L.A., Davankov, V.A, and Lependina, N.A., Sorbtsionnye Khromatogr. Protsessy, 2014, vol. 14, no. 1, pp. 75–85.Google Scholar
  31. 31.
    Qingquan, L., Macromol. Chem. Phys., 2010, vol. 211, no. 9, pp. 1012–1017.CrossRefGoogle Scholar
  32. 32.
    Rakitin, M.Yu., Doluda, V.Yu., Tyanina, A.A., Petrova, A.I., Sulman, E.M., and Matveeva, V.G., Russ. J. Phys. Chem. B, 2017, vol. 11, no. 7, pp 1113–1116.CrossRefGoogle Scholar
  33. 33.
    Berezovskii, V.M., Khimiya vitaminov (Chemistry of Vitamins), Moscow: Pishchevaya promyshlennost’, 1973.Google Scholar
  34. 34.
    Rajashekharam, M.V., Nikalje, D.D., Jaganathan, R., and Chaudhari, R.V., Ind. Eng. Chem. Res., 1997, vol. 36, no. 3, pp. 592–604.CrossRefGoogle Scholar
  35. 35.
    Sangeetha, P., Shanti, K., Rama Rao, K.S., Viswanathan, B., and Selvam P., Appl. Catal., A, 2009, vol. 353, no. 2, pp. 160–165.Google Scholar
  36. 36.
    Deshmukh, A.A., Prashar, A.K., Kinage, A.K., Kumar, R., and Meijboom, R., Ind. Eng. Chem. Res., 2010, vol. 49, no. 23, pp. 12 180–12 184.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. Yu. Doluda
    • 1
    Email author
  • A. E. Filatova
    • 1
  • E. M. Sul’man
    • 1
  • V. G. Matveeva
    • 1
    • 2
  • S. P. Mikhailov
    • 2
  • A. I. Sidorov
    • 1
  • Yu. Yu. Kosivtsov
    • 1
  1. 1.Tver State Technical University,TverRussia
  2. 2.Tver State University,TverRussia

Personalised recommendations