Advertisement

Catalysis in Industry

, Volume 10, Issue 3, pp 181–184 | Cite as

Effect of Diffusion Limitations on the Fischer–Tropsch Synthesis of Long-Chain Hydrocarbons on a Cobalt–Alumina Silica Gel Catalyst

  • A. P. Savost’yanov
  • G. B. Narochnyi
  • R. E. Yakovenko
  • V. N. Soromotin
  • I. N. Zubkov
CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • 8 Downloads

Abstract

The effect of diffusion limitations on the Fischer–Tropsch synthesis of long-chain hydrocarbons on a cobalt–alumina–silica gel catalyst are analyzed at pressures of 1.5 and 2.0 MPa, depending on the particle size distribution (0.4–6.0 mm), gas hourly space velocity (100–1000 h−1), and composition of the synthesis gas (H2 : CO = 1, 2, and 5). It is shown that mass limitations increase the selectivity and productivity of C35+ hydrocarbons (waxes) and the probability of hydrocarbon chain growth. The effect of intradiffusion limitations is estimated at different compositions of the synthesis gas from changes in the apparent energy of activation in the temperature range of 179–225°С. In the high-temperature region, the apparent energy of activation falls from 97.1 to 67.0–82.9 kJ/mol as the H2/CO ratio rises from 1 to 5.

Keywords:

Fischer–Tropsch synthesis long-chain hydrocarbons diffusion limitations cobalt–alumina silica gel catalyst energy of activation 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, grant no. 14-23-00078. It was performed using equipment at the Nanotechnologies Shared Facilities Center of the South Russian State Polytechnic University.

REFERENCES

  1. 1.
    Ellepola, J., Thijssen, N., Grievink, J., Baak, G., Avhale, A., and Schijndel, J., Comput. Chem. Eng., 2012, vol. 42, pp. 2–14.CrossRefGoogle Scholar
  2. 2.
    Mordkovich, V.Z., Sineva, L.V., Kul’chakovskaya, E.V., and Asalieva, E.Yu., Katal. Prom-sti, 2015, no. 5, pp. 23–45.Google Scholar
  3. 3.
    Baliban, R.C., Elia, J.A., and Floudas, C.A., Energy Environ. Sci., 2013, vol. 6, no. 1, pp. 267–287.CrossRefGoogle Scholar
  4. 4.
    Vogel, A.P., van Dyk, B., and Saib, A.M., Catal. Today, 2016, vol. 259, part 2, pp. 323–330.CrossRefGoogle Scholar
  5. 5.
    Krylova, A.Yu., Solid Fuel Chem., 2014, vol. 48, no. 1, pp. 22–35.CrossRefGoogle Scholar
  6. 6.
    Savost’yanov, A.P., Narochnyi, G.B., Yakovenko, R.E., Bakun, V.G. and Zemlyakov, N.D., Catal. Ind., 2014, vol. 6, no. 4, pp. 292–297.CrossRefGoogle Scholar
  7. 7.
    Savost’yanov, A.P., Narochnyi, G.B., Yakovenko, R.E., Astakhov, A.V., Zemlyakov, N.D., Merkin, A.A., and Komarov, A.A., Catal. Ind., 2014, vol. 6, no. 3, pp. 212–217.CrossRefGoogle Scholar
  8. 8.
    Iglesia, E., Appl. Catal., A, 1997, vol. 161, nos. 1–2, pp. 59–78.Google Scholar
  9. 9.
    Merino, D., Sanz, O., and Montes, M., Fuel, 2017, no. 210, pp. 49–57.Google Scholar
  10. 10.
    Li, H., Wang, J., Chen, C., Jia, L., Hou, B., and Lia, D., R. Soc. Chem., 2017, no. 7, pp. 9436–9445.Google Scholar
  11. 11.
    Xu, B., Fan, Y., Zhang, Y., and Tsubaki, N., AIChE J., 2005, vol. 51, no. 7, pp. 2068–2076.CrossRefGoogle Scholar
  12. 12.
    Li, H., Hou, B., Wang, J., Huang, X., Chen, C., Ma, Z., Cui, J., Jia, L., Sun, D., and Li, D., Catal. Sci. Technol., 2017, vol. 7, no. 17, pp. 3812–3822.CrossRefGoogle Scholar
  13. 13.
    Lapidus, A.L., Eliseev, O.L, Tsapkina, M.V., Davydov, P.E., and Belousova, O.S., Kinet. Catal., 2010, vol. 51, no. 5, pp. 731–735.CrossRefGoogle Scholar
  14. 14.
    Yang, J.H., Kim, H.-J., Chun, D.H., Lee, H.-T., Hong, J.-C., Jung, H., and Yang, J.-I., Fuel Process. Technol., 2010, no. 91, no. 3, pp. 285–289.Google Scholar
  15. 15.
    Rytter, E. and Holmen, A., ACS Catal., 2017, vol. 7, no. 8, pp. 5321–5328.CrossRefGoogle Scholar
  16. 16.
    Lapidus, A.L. and Krylova, A.Yu., Ross. Khim. Zh., 2000, vol. 44, no. 1, pp. 43–56.Google Scholar
  17. 17.
    Satterfield, C. N., Heterogeneous Catalysis in Practice, New York: McGraw-Hill, 1980; Moscow: Mir, 1984.Google Scholar
  18. 18.
    Savost’yanov, A.P., Yakovenko, R.E., Sulima, S.I., Bakun, V.G., Narochnyi, G.B., Chernyshev, V.M., and Mitchenko, S.A., Catal. Today, 2017, vol. 279, part 1, pp. 107–114.CrossRefGoogle Scholar
  19. 19.
    Narochnyi, G.B., Yakovenko, R.E., Savost’yanov, A.P., and Bakun, V.G., Catal. Ind., 2016, vol. 8, no. 2, pp. 139–144.CrossRefGoogle Scholar
  20. 20.
    Savost’yanov, A.P., Yakovenko, R.E., Narochnyi, G.B., Bakun, V.G., Sulima, S.I., Yakuba, E.S., and Mit-chenko, S.A., Kinet. Catal., 2017, vol. 58, no. 1, pp. 81–91.CrossRefGoogle Scholar
  21. 21.
    Lapidus, A.L., Krylova, A.Yu., Eliseev, O.L., and Khudyakov, D.S., Khim. Tverd. Topl., 1998, no. 1, pp. 3–8.Google Scholar
  22. 22.
    Satterfield, C N., Mass Transfer in Heterogeneous Catalysis, Cambridge: MIT Press, 1970.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.South Russian State Polytechnic University (NPI)NovocherkasskRussia

Personalised recommendations