Advertisement

Catalysis in Industry

, Volume 10, Issue 3, pp 185–201 | Cite as

Catalytic Steam Cracking of Heavy Oil Feedstocks: A Review

  • P. M. Eletskii
  • O. O. Mironenko
  • R. G. Kukushkin
  • G. A. Sosnin
  • V. A. Yakovlev
CATALYSIS IN PETROLEUM REFINING INDUSTRY
  • 64 Downloads

Abstract

In view of the worsening quality of crude oil, the use of unconventional petroleum feedstocks (heavy oils, bitumens, residues, etc.) in processing is becoming increasingly important. The processing of heavy oil feedstocks (HOF) requires the development of new effective techniques that will lead to an increase in the yield of light fractions, suppression of coke formation, and saturation of liquid products with hydrogen. At the same time, the capital and operating costs of the process should be minimized because the cost of production and transportation for HOF is several times higher than for light and middle oils. The present review summarizes the results of studies of the catalytic steam cracking of HOF—a potential alternative to conventional HOF upgrading based on carbon rejection (thermal cracking, visbreaking, catalytic cracking) or hydrogen addition (hydrocracking). The main differences of this process from HOF upgrading with water (aqueous pyrolysis in sub- or supercritical water), the peculiarities of the catalytic steam cracking depending on the process conditions and the type of catalyst, and possible mechanisms of water participation in the process were discussed.

Keywords:

upgrading of heavy oil feedstock bitumen vacuum residue catalytic steam cracking hydrovisbreaking oxidative cracking superheated steam steam reforming 

Notes

ACKNOWLEDGMENTS

This study was financially supported by the Russian Scientific Foundation (grant no. 15-13-00106).

REFERENCES

  1. 1.
    BP energy outlook 2016. BP Official Website. http:// www.bp.com/content/dam/bp/excel/energy-economics/ energy-outlook-2016/bp-energy-outlook-2016-summary-tables.xlsx. Cited July 12, 2018.Google Scholar
  2. 2.
    Alboudwarej, H., Felix, J., Taylor, S., Badry, R., Bremner, C., Brough, B., Skeates, C., Baker, A., Palmer, D., Pattison, K., Beshry, M., Krawchuk, P., Brown, G., Calvo, R., Triana, J. A. C., Hathcock, R., Koerner, K., Hughes, T., Kundu, D., de Cárdenas, J.L., and West, C., Oilfield Rev., 2006, vol. 18, no. 2, pp. 34–53.Google Scholar
  3. 3.
    World energy resources 2013 survey: summary. World Energy Council Official Website. https://www. worldenergy.org/wp-content/uploads/2013/10/WEC_ Resources_summary-final_180314_TT.pdf. Cited July 12, 2018.Google Scholar
  4. 4.
    World oil outlook 2015. Organization of the Petroleum Exporting Countries Official Website. http://www. opec.org/opec_web/static_files_project/media/downloads/publications/WOO%202015.pdf. Cited July 12, 2018.Google Scholar
  5. 5.
    Sahu, R., Song, B.J., Im, J.S., Jeon, Y.-P., and Lee, C.W., J. Ind. Eng. Chem., 2015, vol. 27, pp. 12–24.CrossRefGoogle Scholar
  6. 6.
    Hart, A., J. Pet. Explor. Prod. Technol., 2014, vol. 4, no. 3, pp. 327–336.CrossRefGoogle Scholar
  7. 7.
    Shah, A., Fishwick, R., Wood, J., Leeke, G., Rigby, S., and Greaves, M., Energy Environ. Sci., 2010, vol. 3, no. 6, pp. 700–714.CrossRefGoogle Scholar
  8. 8.
    Speight, J.G., Heavy and Extra-Heavy Oil Upgrading Technologies, New York: Elsevier, 2013.Google Scholar
  9. 9.
    Castañeda, L.C., Muñoz, J.A.D., and Ancheyta, J., Catal. Today, 2014, vols. 220–222, pp. 248–273.Google Scholar
  10. 10.
    Sawarkar, A.N., Pandit, A.B., Samant, S.D., and Joshi, J.B., Can. J. Chem. Eng., 2007, vol. 85, no. 1, pp. 1–24.CrossRefGoogle Scholar
  11. 11.
    Maximov, M.N., Solmanov, P.S., Tsvetkov, V.S., Eremina, Yu.V., Zhilkina, E.O., Tomina, N.N., and Pimerzin, A.A., Russ. J. Appl. Chem., 2015, vol. 88, no. 4, pp. 609–616.CrossRefGoogle Scholar
  12. 12.
    Furimsky, E., Ind. Eng. Chem. Res., 2013, vol. 52, no. 50, pp. 17695–17713.CrossRefGoogle Scholar
  13. 13.
    US Patent Application 20130015100, 2013.Google Scholar
  14. 14.
    Kozhevnikov, I.V., Nuzhdin, A.L., and Martyanov, O.N., J. Supercrit. Fluids, 2010, vol. 55, no. 1, pp. 217–222.CrossRefGoogle Scholar
  15. 15.
    Li, N., Yan, B., and Xiao, X.-M., Energies, 2015, vol. 8, no. 8, pp. 8962–8989.CrossRefGoogle Scholar
  16. 16.
    Gai, X.K., Arano, H., Lu, P., Mao, J.-W., Yoneyama, Y., Lu, C.-X., Yang, R.-Q., and Tsubaki, N., Fuel Process. Technol., 2016, vol. 142, pp. 315–318.CrossRefGoogle Scholar
  17. 17.
    US Patent 7208181, 2007.Google Scholar
  18. 18.
    Kapadia, P.R., Kallos, M.S., and Gates, I.D., Fuel Process. Technol., 2015, vol. 131, pp. 270–289.CrossRefGoogle Scholar
  19. 19.
    Muraza, O. and Galadima, A., Fuel, 2015, vol. 157, pp. 219–231.CrossRefGoogle Scholar
  20. 20.
    Chen, Y., Wang, Y., Wu, C., and Xia, F., Energy Fuels, 2008, vol. 22, no. 3, pp. 1502–1508.CrossRefGoogle Scholar
  21. 21.
    Wu, C., Lei, G.-L., Yao, C.-J., Sun, K.-J., Gai, P.-Y., and Cao, Y.-B., J. Fuel Chem. Technol., 2010, vol. 38, no. 6, pp. 684–690.CrossRefGoogle Scholar
  22. 22.
    Zhao, F., Liu, Y., Wu, Y., Zhao, X., and Tan, L., Chem. Technol. Fuels Oils, 2012, vol. 48, no. 4, pp. 273–282.CrossRefGoogle Scholar
  23. 23.
    Chao, K., Chen, Y., Li, J., Zhang, X., and Dong, B., Fuel Process. Technol., 2012, vol. 104, pp. 174–180.CrossRefGoogle Scholar
  24. 24.
    Golmohammadi, M., Ahmadi, S.J., and Towfighi, J., J. Supercrit. Fluids, 2016, vol. 113, pp. 136–143.CrossRefGoogle Scholar
  25. 25.
    Weingartner, H. and Franck, E.U., Angew. Chem., Int. Ed., 2005, vol. 44, no. 18, pp. 2672–2692.CrossRefGoogle Scholar
  26. 26.
    Arcelus-Arrillaga, P., Pinilla, J.L., Hellgardt, K., and Millan, M., Energy Fuels, 2017, vol. 31, no. 5, pp. 4571–4587.CrossRefGoogle Scholar
  27. 27.
    Arcelus-Arrillaga, P., Hellgardt, K., and Millan, M., Fuel, 2017, vol. 209, pp. 434–441.CrossRefGoogle Scholar
  28. 28.
    Sato, T., Adschiri, T., Arai, K., Rempel, G.L., and Ng, F.T., Fuel, 2003, vol. 82, no. 10. pp. 1231–1239.CrossRefGoogle Scholar
  29. 29.
    Tang, X., Wang, S., Qian, L., Li, Y., Lin, Z., Xu, D., and Zhang, Y., Chem. Eng. Res. Des., 2015, vol. 100, pp. 530–541.CrossRefGoogle Scholar
  30. 30.
    Savage, P.E., J. Supercrit. Fluids, 2009, vol. 47, no. 3, pp. 407–414.CrossRefGoogle Scholar
  31. 31.
    Reina, T.R., Yeletsky, P., Bermúdez, J.M., Arcelus-Arrillaga, P., Yakovlev, V.A., and Millan, M., Fuel, 2016, vol. 182, pp. 740–748.CrossRefGoogle Scholar
  32. 32.
    Maity, S.K., Ancheyta, J., and Marroquín, G., Energy Fuels, 2010, vol. 24, no. 5, pp. 2809–2816.CrossRefGoogle Scholar
  33. 33.
    Canıaz, R.O. and Erkey, C., Chem. Eng. Res. Des., 2014, vol. 92, no. 10, pp. 1845–1863.CrossRefGoogle Scholar
  34. 34.
    Yan, T., Xu, J., Wang, L., Liu, Y., Yang, C., and Fang, T., RSC Adv., 2015, vol. 5, no. 92, pp. 75129–75140.CrossRefGoogle Scholar
  35. 35.
    Wang, F., Xu, Y., Ren, J., and Li, Y., Chem. Eng. Process. Process Intensif., 2010, vol. 49, no. 1, pp. 51–58.CrossRefGoogle Scholar
  36. 36.
    Sedighi, M., Keyvanloo, K., and Towfighi, J., Fuel, 2013, vol. 109, pp. 432–438.CrossRefGoogle Scholar
  37. 37.
    Sadrameli, S.M., Fuel, 2016, vol. 173, pp. 285–297.CrossRefGoogle Scholar
  38. 38.
    Wagner, W. and Kretzschmar, H.-J., International Steam Tables, Berlin: Springer, 2008.CrossRefGoogle Scholar
  39. 39.
    US Patent 1599629, 1926.Google Scholar
  40. 40.
    US Patent 2028795, 1936.Google Scholar
  41. 41.
    US Patent 2135132, 1938.Google Scholar
  42. 42.
    US Patent 2436923, 1948.Google Scholar
  43. 43.
    Duprez, D., Appl. Catal., A, 1992, vol. 82, no. 2, pp. 111–157.Google Scholar
  44. 44.
    Al-Zuhair, S., Hassan, M., Djama, M., and Khaleel, A., Chem. Eng. Commun., 2017, vol. 204, no. 2, pp. 141–148.CrossRefGoogle Scholar
  45. 45.
    Cimenler, U., Joseph, B., and Kuhn, J.N., AIChE J., 2017, vol. 63, no. 1, pp. 200–207.CrossRefGoogle Scholar
  46. 46.
    Pérez Zurita, J., Bartolini, M., Righi, T., Vitale, G., and Pereira Almao, P., Fuel, 2015, vol. 154, pp. 71–79.CrossRefGoogle Scholar
  47. 47.
    Maslyanskii, G., Rabinovich, G., Avtonomova, N., and Brisker, K., Pet. Chem. U.S.S.R., 1966, vol. 5, pp. 112–119.CrossRefGoogle Scholar
  48. 48.
    Maslyanskii, G.N., Rabinovich, G.L., Brisker, K.L., and Avtonomova, N.Kh., Pet. Chem. U.S.S.R., 1966, vol. 6, pp. 178–183.CrossRefGoogle Scholar
  49. 49.
    Kim, C.J., J. Catal., 1978, vol. 52, no. 1, pp. 169–175.CrossRefGoogle Scholar
  50. 50.
    Ferella, F., Stoehr, J., De Michelis, I., and Hornung, A., Fuel, 2013, vol. 105, pp. 614–629.CrossRefGoogle Scholar
  51. 51.
    Pinilla, J.L., Arcelus-Arrillaga, P., Puron, H., and Millan, M., Appl. Catal., A, 2013, vol. 459, pp. 17–25.Google Scholar
  52. 52.
    Pinilla, J.L., Arcelus-Arrillaga, P., Puron, H., and Millan, M., Fuel, 2013, vol. 109, pp. 303–308.CrossRefGoogle Scholar
  53. 53.
    Rabinovich, G.L., Treiger, L.M., and Maslyanskii, G.N., Pet. Chem. U.S.S.R., 1973, vol. 13, pp. 199–205.CrossRefGoogle Scholar
  54. 54.
    Wang, X. and Gorte, R.J., Appl. Catal., A, 2002, vol. 224, nos. 1–2, pp. 209–218.Google Scholar
  55. 55.
    Sanhoob, M.A., Muraza, O., Shafei, E.N., Yokoi, T., and Choi, K.-H., Appl. Catal., B, 2017, vol. 210, pp. 432–443.CrossRefGoogle Scholar
  56. 56.
    Mozhaiko, V.N., Rabinovich, G.L., and Maslya-nskii, G.N., Pet. Chem. U.S.S.R., 1976, vol. 16, pp. 1–7.CrossRefGoogle Scholar
  57. 57.
    Dutta, R.P., McCaffrey, W.C., Gray, M.R., and Muehlenbachs, K., Energy Fuels, 2000, vol. 14, no. 3, pp. 671–676.CrossRefGoogle Scholar
  58. 58.
    Nhieu, P., Liu, Q., and Gray, M.R., Fuel, 2016, vol. 166, pp. 152–156.CrossRefGoogle Scholar
  59. 59.
    Ahn, H.K., Park, S.H., Sattar, S., and Woo, S.I., Catal. Today, 2016, vol. 265, pp. 118–123.CrossRefGoogle Scholar
  60. 60.
    Mironenko, O.O., Sosnin, G.A., Eletskii, P.M., Gulyaeva, Y.K., Bulavchenko, O.A., Stonkus, O.A., Rodina, V.O., and Yakovlev, V.A., Pet. Chem., 2017, vol. 57, no. 7, pp. 618–629.CrossRefGoogle Scholar
  61. 61.
    Eletskii, P.M., Mironenko, O.O., Sosnin, G.A., Bulavchenko, O.A., Stonkus, O.A., and Yakovlev, V.A., Catal. Ind., 2016, vol. 8, no. 4, pp. 328–335.CrossRefGoogle Scholar
  62. 62.
    Clark, P.D. and Kirk, M.J., Energy Fuels, 1994, vol. 8, no. 2, pp. 380–387.CrossRefGoogle Scholar
  63. 63.
    Lee, H.S., Nguyen-Huy, C., Pham, T.-T., and Shin, E.W., Fuel, 2016, vol. 165, pp. 462–467.CrossRefGoogle Scholar
  64. 64.
    Khadzhiev, S.N., Kadiev, K.M., Yampolskaya, G.P., and Kadieva, M.K., Adv. Colloid Interface Sci., 2013, vols. 197–198, pp. 132–145.Google Scholar
  65. 65.
    Angeles, M.J., Leyva, C., Ancheyta, J., and Ramírez, S., Catal. Today, 2014, vol. 220–222, pp. 274–294.Google Scholar
  66. 66.
    Khadzhiev, S.N., Kadiev, K.M., and Kadieva, M.K., Pet. Chem., 2014, vol. 54, no. 5, pp. 323–346.CrossRefGoogle Scholar
  67. 67.
    Sharypov, V.I., Kuznetsov, B.N., Beregovtsova, N.G., Baryshnikov, S.V., and Sidel’nikov, V.N., Fuel, 1996, vol. 75, no. 7, pp. 791–794.CrossRefGoogle Scholar
  68. 68.
    RF Patent 2132356, 1999.Google Scholar
  69. 69.
    Marzin, R., Pereira, P., McGrath, M.J., Feintuch, H., Thompson, G., and Houde, E., Oil Gas J., 1998, vol. 96, no. 44, pp. 79–86.Google Scholar
  70. 70.
    Pereira-Almao, P., Flores, C., Zbinden, H., Guitian, J., Solari, R.B., Feintuch, H., and Gillis, D., Oil Gas J., 2001, vol. 99, no. 20, pp. 79–85.Google Scholar
  71. 71.
    US Patent 5688395, 1997.Google Scholar
  72. 72.
    US Patent 5688741, 1997.Google Scholar
  73. 73.
    US Patent 5885441, 1999.Google Scholar
  74. 74.
    Fathi, M.M. and Pereira-Almao, P., Energy Fuels, 2011, vol. 25, no. 11, pp. 4867–4877.CrossRefGoogle Scholar
  75. 75.
    Cabrales-Navarro, F.A. and Pereira-Almao, P., Energy Fuels, 2017, vol. 31, no. 3, pp. 3121–3131.CrossRefGoogle Scholar
  76. 76.
    Fumoto, E., Tago, T., Tsuji, T., and Masuda, T., Energy Fuels, 2004, vol. 18, no. 6, pp. 1770–1774.CrossRefGoogle Scholar
  77. 77.
    Hosseinpour, M., Ahmadi, S.J., and Fatemi, S., J. Supercrit. Fluids, 2015, vol. 100, pp. 70–78.CrossRefGoogle Scholar
  78. 78.
    Machín, I., de Jesús, J.C., Rivas, G., Higuerey, I., Córdova, J., Pereira, P., Ruette, F., and Sierraalta, A., J. Mol. Catal. A: Chem., 2005, vol. 227, nos. 1–2, pp. 223–229.Google Scholar
  79. 79.
    Masuda, T., Kuwahara, H., Mukai, S.R., and Hashimoto, K., Chem. Eng. Sci., 1999, vol. 54, nos. 13–14, pp. 2773–2779.Google Scholar
  80. 80.
    Masuda, T., Kondo, Y., Miwa, M., Shimotori, T., Mukai, S.R., Hashimoto, K., Takano, M., Kawasaki, S., and Yoshida, S., Chem. Eng. Sci., 2001, vol. 56, no. 3, pp. 897–904.CrossRefGoogle Scholar
  81. 81.
    Fumoto, E., Tago, T., and Masuda, T., Energy Fuels, 2006, vol. 20, no. 1, pp. 1–6.CrossRefGoogle Scholar
  82. 82.
    Fumoto, E., Matsumura, A., Sato, S., and Takanohashi, T., Energy Fuels, 2009, vol. 23, no. 3, pp. 1338–1341.CrossRefGoogle Scholar
  83. 83.
    Funai, S., Fumoto, E., Tago, T., and Masuda, T., Chem. Eng. Sci., 2010, vol. 65, no. 1, pp. 60–65.CrossRefGoogle Scholar
  84. 84.
    Fumoto, E., Matsumura, A., Sato, S., and Takanohashi, T., Energy Fuels, 2009, vol. 23, no. 11, pp. 5308–5311.CrossRefGoogle Scholar
  85. 85.
    Fumoto, E., Sato, S., and Takanohashi, T., Energy Fuels, 2011, vol. 25, no. 2, pp. 524–527.CrossRefGoogle Scholar
  86. 86.
    Fumoto, E., Sato, S., and Takanohashi, T., J. Jpn. Pet. Inst., 2010, vol. 53, no. 4, pp. 260–261.CrossRefGoogle Scholar
  87. 87.
    Fumoto, E., Sato, S., and Takanohashi, T., ACS Symp. Ser., 2012, vol. 1092, pp. 75–85.CrossRefGoogle Scholar
  88. 88.
    Fumoto, E., Sugimoto, Y., Sato, S., and Takanohashi, T., J. Jpn. Pet. Inst., 2015, vol. 58, no. 5, pp. 329–335.CrossRefGoogle Scholar
  89. 89.
    Fumoto, E., Sato, S., and Takanohashi, T., J. Jpn. Pet. Inst., 2015, vol. 58, no. 5, pp. 336–340.CrossRefGoogle Scholar
  90. 90.
    Sonoyama, N., Nobuta, K., Kimura, T., Hosokai, S., Hayashi, J., Tago, T., and Masuda, T., Fuel Process. Technol., 2011, vol. 92, no. 4, pp. 771–775.CrossRefGoogle Scholar
  91. 91.
    Kondoh, H., Nakasaka, Y., Kitaguchi, T., Yoshikawa, T., Tago, T., and Masuda, T., Fuel Process. Technol., 2016, vol. 145, pp. 96–101.CrossRefGoogle Scholar
  92. 92.
    Kondoh, H., Hasegawa, N., Yoshikawa, T., Nakasaka, Y., Tago, T., and Masuda, T., Energy Fuels, 2016, vol. 30, no. 12, pp. 10358–10364.CrossRefGoogle Scholar
  93. 93.
    Nguyen-Huy, C. and Shin, E.W., Fuel, 2016, vol. 179, pp. 17–24.CrossRefGoogle Scholar
  94. 94.
    Zachariah, A., Wang, L., Yang, S., Prasad, V., and de Klerk, A., Energy Fuels, 2013, vol. 27, no. 6, pp. 3061–3070.CrossRefGoogle Scholar
  95. 95.
    Barbier, J. and Duprez, D., Appl. Catal., B, 1994, vol. 4, nos. 2—3,pp. 105–140.CrossRefGoogle Scholar
  96. 96.
    Dejhosseini, M., Aida, T., Watanabe, M., Takami, S., Hojo, D., Aoki, N., Arita, T., Kishita, A., and Adschiri, T., Energy Fuels, 2013, vol. 27, no. 8, pp. 4624–4631.CrossRefGoogle Scholar
  97. 97.
    Murota, T., Hasegawa, T., Aozasa, S., Matsui, H., and Motoyama, M., J. Alloys Compd., 1993, vol. 193, nos. 1–2, pp. 298–299.Google Scholar
  98. 98.
    Nguyen-Huy, C. and Shin, E.W., Fuel, 2016, vol. 169, pp. 1–6.CrossRefGoogle Scholar
  99. 99.
    Nguyen-Huy, C. and Shin, E.W., Fuel, 2017, vol. 192, pp. 149–157.CrossRefGoogle Scholar
  100. 100.
    Do, L.T., Nguyen-Huy, C., and Shin, E.W., Appl. Catal., A, 2016, vol. 525, pp. 23–30.Google Scholar
  101. 101.
    Kondoh, H., Tanaka, K., Nakasaka, Y., Tago, T., and Masuda, T., Fuel, 2016, vol. 167, pp. 288–294.CrossRefGoogle Scholar
  102. 102.
    Khalil, U., Muraza, O., Kondoh, H., Watanabe, G., Nakasaka, Y., Al-Amer, A., and Masuda, T., Energy Fuels, 2016, vol. 30, no. 2, pp. 1304–1309.Google Scholar
  103. 103.
    Pae, Y.I., Lee, S.H., and Sohn, J.R., Catal. Lett., 2005, vol. 99, nos. 3–4, pp. 241–248.Google Scholar
  104. 104.
    Cerqueira, H.S., Caeiro, G., Costa, L., and Ramôa Ribeiro, F., J. Mol. Catal. A: Chem., 2008, vol. 292, nos. 1–2, pp. 1–13.Google Scholar
  105. 105.
    Muraza, O., J. Anal. Appl. Pyrolysis, 2015, vol. 114, pp. 1–10.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations