Advertisement

Catalysis in Industry

, Volume 10, Issue 2, pp 126–134 | Cite as

Effect of the Density of a Microspherical Catalyst on the Operating Regimes of a Fluidized Bed

  • O. P. Klenov
  • A. S. Noskov
  • O. A. Parakhin
Engineering Problems. Operation and Production
  • 10 Downloads

Abstract

An experimental study is performed of a circulating fluidized bed of two types of finely dispersed Geldart A particles with different bulk densities. The first type of particles have bulk density ρb = 1200 kg/m3, while the bulk density of the second type of particles is ρb = 1300 kg/m3. The studies are performed on a test bench 0.7 m in diameter and 5.75 m tall at room temperature with air used as the fluidizing gas. The velocity of fluidization ranges from 0.1 to 0.75 m/s. The bed is sectioned along its height with a set of horizontal diffuser grids. The results from measuring the fluctuations, the average drops in pressure, and the pressure distribution along the height of the fluidized bed are used to estimate the effect produced by the density of particles on its operational regimes. Velocity of transition Uc, determined from the mean-square deviations of pressure drop fluctuations, is 0.40 m/s for lighter particles and 0.35 m/s for heavier particles. Velocity of transition Uc determined from the power of the energy spectrum of pressure fluctuations Е is 0.45 and 0.40 m/s for lighter and heavier particles, respectively. The results from pressure measurements along the bed height show a linear drop with increasing bed height, and this drop is faster for heavier particles than for lighter particles.

Keywords

fluidized bed microspherical catalyst turbulent regime bed sectioning with horizontal grids mean-square deviation of pressure drop fluctuations particle bed density effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sadeghbeigi, R., Fluid Catalytic Cracking Handbook, Oxford: Elsevier, 2012.Google Scholar
  2. 2.
    Pakhomov, N.A., in Promyshlennyi kataliz v lektsiyakh (Industrial Catalysis in Lectures), Noskov, A.S., Ed., Moscow: Kalvis, 2006, vol. 6, pp. 53–98.Google Scholar
  3. 3.
    Sanfilippo, D. and Miracca, I., Catal. Today, 2006, vol. 111, nos. 1–2, pp. 133–139.CrossRefGoogle Scholar
  4. 4.
    Geldart, D., Powder Technol., 1973, vol. 7, no. 5, pp. 285–292.CrossRefGoogle Scholar
  5. 5.
    Yerushalmi, J. and Cankurt, N.T., Powder Technol., 1979, vol. 24, no. 2, pp. 187–205.CrossRefGoogle Scholar
  6. 6.
    Baskakov, A.P., Tuponogov, V.G., and Filippovsky, N.F., Powder Technol., 1986, vol. 45, no. 2, pp. 113–117.CrossRefGoogle Scholar
  7. 7.
    Clark, N.N. and Atkinson, C.M., Chem. Eng. Sci., 1988, vol. 43, no. 7, pp. 1547–1557.CrossRefGoogle Scholar
  8. 8.
    Chehbouni, A., Chaouki, J., Guy, C., and Klvana, D., Ind. Eng. Chem. Res., 1994, vol. 33, no. 8, pp. 1889–1896.CrossRefGoogle Scholar
  9. 9.
    Bi, H.T., Grace, J.R., and Zhu, J., Powder Technol., 1995, vol. 82, no. 3, pp. 239–253.CrossRefGoogle Scholar
  10. 10.
    Bai, D., Shibuya, E., Masuda, Y., Nakagawa, N., and Kato, K., Chem. Eng. Sci., 1996, vol. 51, no. 6, pp. 957–966.CrossRefGoogle Scholar
  11. 11.
    Trnka, O., Veselý, V., Hartman, M., and Beran, Z., AIChE J., 2000, vol. 46, no. 3, pp. 509–514.CrossRefGoogle Scholar
  12. 12.
    Kashkin, V.N., Lakhmostov, V.S., Zolotarskii, I.A., Noskov, A.S., and Zhou, J.J., Chem. Eng. J., 2003, vol. 91, nos. 2–3, pp. 215–218.CrossRefGoogle Scholar
  13. 13.
    Johnsson, F., Zijerveld, R.C., Schouten, J.C., van den Bleek, C.M., and Leckner, B., Int. J. Multiphase Flow, 2000, vol. 26, no. 4, pp. 663–715.CrossRefGoogle Scholar
  14. 14.
    Ege, P., Grislingås, A., and de Lasa, H.I., Chem. Eng. J., 1996, vol. 61, no. 3, pp. 179–190.Google Scholar
  15. 15.
    Bai, D., Issangya, A.S., and Grace, J.R., Ind. Eng. Chem. Res., 1999, vol. 38, no. 3, pp. 803–811.CrossRefGoogle Scholar
  16. 16.
    Ellis, N., Briens, L.A., Grace, J.R., Bi., H.T. and Lim, C.J., Chem. Eng. J., 2003, vol. 96, nos. 1–3, pp. 105–116.CrossRefGoogle Scholar
  17. 17.
    Chen, A.H., Bi, H.T., and Grace, J.R., Powder Technol., 2003, vols. 135–136, pp. 181–191.CrossRefGoogle Scholar
  18. 18.
    Foka, M., Chaouki, J., Guy, C., and Klvana, D., Chem. Eng. Sci., 1996, vol. 51, no. 5, pp. 713–723.CrossRefGoogle Scholar
  19. 19.
    Bi, H.T. and Grace, J.R., Chem. Eng. J. Biochem. Eng. J., 1995, vol. 57, no. 3, pp. 261–271.CrossRefGoogle Scholar
  20. 20.
    Harrison, D. and Grace, J.R., in Fluidization, Davidson, J.F. and Harrison, D., Eds., New York: Academic Press, 1971, ch.13.Google Scholar
  21. 21.
    Zhang, Y., Grace, J.R., Bi, X., Lu, C., and Shi, M., Chem. Eng. Sci., 2009, vol. 64, no. 14, pp. 3270–3281.CrossRefGoogle Scholar
  22. 22.
    Zhang, Y., Lu, C., and Shi, M., Chem. Eng. Res. Des., 2009, vol. 87, no. 10, pp. 1400–1408.CrossRefGoogle Scholar
  23. 23.
    Van Dijk, J.-J., Hoffmann, A.C., Cheesman, D., and Yates, J.G., Powder Technol., 1998, vol. 98, no. 3, pp. 273–278.CrossRefGoogle Scholar
  24. 24.
    Cui, H.P., Strabel, M., Rusnell, D., Bi, H.T., Mansaray, K., Grace, J.R., Lim, C.J., McKnight, C.A., and Bulbuc, D., Chem. Eng. Sci., 2006, vol. 61, no. 2, pp. 388–396.CrossRefGoogle Scholar
  25. 25.
    Serov, A.N., Development and study of an instrument for the increased-precision measurement of electric power quality characteristics, Cand. Sci. (Eng.) Dissertation, Moscow: Moscow Power Eng. Inst., 2016.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.OOO NPO SintezBarnaulRussia

Personalised recommendations