Advertisement

Catalysis in Industry

, Volume 10, Issue 2, pp 97–104 | Cite as

Synthesis of Dimethyl Ether from Synthesis Gas in the Presence of a Megamax 507/γ-Al2O3 Catalyst

  • M. A. Kipnis
  • P. V. Samokhin
  • I. A. Belostotskii
  • T. V. Turkova
Catalysis in Chemical and Petrochemical Industry

Abstract

The kinetics of the direct synthesis of dimethyl ether (DME) from synthesis gas (21.8 vol % CO, 5.2 vol % CO2, 5.3 vol % N2, and 67.7 vol % H2) is studied under laboratory flow reactors in a pressure range of 0.2–5 MPa in the presence of a bifunctional catalyst. The bifunctional catalyst is synthesized by pelletizing a mixture of appropriate fractions of the following milled commercial components: a Megamax 507 methanol catalyst and γ-alumina with a graphite additive. Data on the activation of the bifunctional catalyst are consistent with the TPR data for the original Megamax 507 sample, suggesting that the synthesis conditions for the bifunctional catalyst do not affect the state of copper oxide. At temperatures of up to 280°C, a space velocity of about 4000–10000 L/(kgcat h), and a pressure of 3–5 MPa, the productivity with respect to oxygenates (DME and methanol) grows linearly along with the load. An increase in load results in a limiting value that can be used to determine the maximum oxygenate productivity of the catalyst as a function of temperature and pressure. A set of experimental data on the effect of space velocity, temperature, and pressure on the composition of the converted gas and the DME/methanol ratio is derived.

Keywords

dimethyl ether methanol synthesis methanol dehydration copper oxide catalyst kinetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marchionna, M., Patrini, R., Sanfilippo, D., and Migliavacca, G., Fuel Process. Technol., 2008, vol. 89, no. 12, pp. 1255–1261.CrossRefGoogle Scholar
  2. 2.
    Haro, P., Trippe, F., Stahl, R., and Henrich, E., Appl. Energy, 2013, vol. 108, pp. 54–65.CrossRefGoogle Scholar
  3. 3.
    Fornell, R., Berntsson, T., and Åsblad, A., Energy, 2013, vol. 50, pp. 83–92.CrossRefGoogle Scholar
  4. 4.
    Bhattacharya, S., Kabir, K.B., and Hein, K., Prog. Energy Combust. Sci., 2013, vol. 39, no. 6, pp. 577–605.CrossRefGoogle Scholar
  5. 5.
    Kitaev, L.E., Bukina, Z.M., Yushchenko, V.V., Ionin, D.A., Kolesnichenko, N.V., and Khadzhiev, S.N., Russ. J. Phys. Chem. A, 2014, vol. 88, no. 3, pp. 381–385.CrossRefGoogle Scholar
  6. 6.
    Azizi, Z., Rezaeimanesh, M., Tohidian, T., and Rahimpour, M.R., Chem. Eng. Process., 2014, vol. 82, pp. 150–172.CrossRefGoogle Scholar
  7. 7.
    Markova, N.A., Bukina, Z.M., Ionin, D.A., Kolesnichenko, N.V., and Khadzhiev, S.N., Pet. Chem., 2016, vol. 56, no. 9, pp. 857–862.CrossRefGoogle Scholar
  8. 8.
    Ionin, D.A., Kolesnichenko, N.V., Bukina, Z.M., and Khadzhiev, S.N., Pet. Chem., 2015, vol. 55, no. 2, pp. 112–117.CrossRefGoogle Scholar
  9. 9.
    Khadzhiev, S.N., Magomedova, M.V., and Peresypkina, E.G., Pet. Chem., 2016, vol. 56, no. 9, pp. 788–797.CrossRefGoogle Scholar
  10. 10.
    Kunkes, E. and Behrens, M., in Chemical Energy Storage, Schlögl, R., Ed., 2013, Berlin: De Gruyter, pp. 413–442.Google Scholar
  11. 11.
    Pontzen, F., Liebner, W., Gronemann, V., Rothaemel, M., and Ahlers, B., Catal. Today, 2011, vol. 171, no. 1, pp. 242–250.CrossRefGoogle Scholar
  12. 12.
    Jeong, J.W., Ahn, C.-Il., Lee, D.H., Um, S.H., and Bae, J.W., Catal. Lett., 2013, vol. 143, no. 7, pp. 666–672.CrossRefGoogle Scholar
  13. 13.
    McBride, K., Turek, T., and Güttel, R., AIChE J., 2012, vol. 58, no. 11, pp. 3468–3473.CrossRefGoogle Scholar
  14. 14.
    Li, Z., Yang, C., Li, J., and Wu, J., Adv. Mater. Res., 2012, vols. 457–458, pp. 261–264.CrossRefGoogle Scholar
  15. 15.
    García-Trenco, A., Valencia, S., and Martínez, A., Appl. Catal., A, 2013, vol. 468, pp. 102–111.CrossRefGoogle Scholar
  16. 16.
    Bonura, G., Cordaro, M., Cannilla, C., Mezzapica, A., Spadaro, L., Arena, F., and Frusteri, F., Catal. Today, 2014, vol. 228, pp. 51–57.CrossRefGoogle Scholar
  17. 17.
    Bonura, G., Cordaro, M., Spadaro, L., Cannilla, C., Arena, F., and Frusteri, F., Appl. Catal., B, 2013, vols. 140–141, pp. 16–24.CrossRefGoogle Scholar
  18. 18.
    Kosova, N.I., Kurina, L.N., and Shilyaeva, L.P., Russ. J. Phys. Chem. A, 2011, vol. 85, no. 7, pp. 1140–1144.CrossRefGoogle Scholar
  19. 19.
    Zhu, Y., Wang, S., Ge, X., Liu, Q., Luo, Z., and Cen, K., Fuel Process. Technol., 2010, vol. 91, no. 4, pp. 424–429.CrossRefGoogle Scholar
  20. 20.
    Rozovskii, A.Ya., Russ. Chem. Rev., 1989, vol. 58, no. 1, pp. 41–56.CrossRefGoogle Scholar
  21. 21.
    Da Silva, R.J., Pimentel, A.F., Monteiro, R.S., and Mota, C.J.A., J. CO2 Util., 2016, vol. 15, pp. 83–88.CrossRefGoogle Scholar
  22. 22.
    Witoon, T., Permsirivanich, T., Kanjanasoontorn, N., Akkaraphataworn, C., Seubsai, A., Faungnawakij, K., Warakulwit, C., Chareonpanich, M., and Limtrakul, J., Catal. Sci. Technol., 2015, vol. 5, no. 4, pp. 2347–2357.CrossRefGoogle Scholar
  23. 23.
    Joo, O.-S., Jung, K.-D., Moon, I., Rozovskii, A.Ya., Lin, G.I., Han, S.-H., and Uhm, S.-J., Ind. Eng. Chem. Res., 1999, vol. 38, no. 5, pp. 1808–1812.CrossRefGoogle Scholar
  24. 24.
    Usachev, N.Ya., Kharlamov, V.V., Belanova, E.P., Starostina, T.S., and Krukovskii, I.M., Ross. Khim. Zh., 2008, vol. 52, no. 4, pp. 22–31.Google Scholar
  25. 25.
    Gerzeliev, I.M., Usachev, N.Ya., Popov, A.Yu., and Khadzhiev, S.N., Pet. Chem., 2011, vol. 51, no. 6, pp. 411–417.CrossRefGoogle Scholar
  26. 26.
    Kipnis, M.A., Samokhin, P.V., Bondarenko, G.N., Volnina, E.A., Kostina, Yu.V., Yashina, O.V., Barabanov, V.G., and Kornilov, V.V., Russ. J. Phys. Chem. A, 2011, vol. 85, no. 8, pp. 1322–1331.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. A. Kipnis
    • 1
  • P. V. Samokhin
    • 1
  • I. A. Belostotskii
    • 1
  • T. V. Turkova
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations