Advertisement

Catalysis in Industry

, Volume 10, Issue 2, pp 91–96 | Cite as

Catalytic Redox Transformations in Rock Matrices

  • N. M. Dobrynkin
  • M. V. Batygina
  • A. S. Noskov
Catalysis and Nanotechnologies
  • 17 Downloads

Abstract

The properties of catalytic systems based on iron oxide and inorganic matrices of oil-bearing rocks (basalt, clay, sandstone) in the decomposition of ammonium nitrate, oxidation of methane, and hydrocracking of asphaltenes were studied. The catalytic systems were iron oxide (hematite with a particle size of D = 11.0–20 nm, preparation temperature 453–473 K) fixed on matrices during co-hydrolysis of carbamide and iron chloride under hydrothermal conditions at temperatures of T = 433–473 K and pressures of 0.6–1.6 MPa. The iron oxide catalysts based on basalt and clay were most active in deep oxidation of methane (at 773 K, \({X_{C{H_4}}}\) = 83% and 72.9%, respectively); the Fe2O3/basalt and Fe2O3/sandstone systems were more active in the decomposition of ammonium nitrate. In hydrocracking of asphaltenes to maltenes, the catalyst activity decreased in the series Fe2O3/basalt > Fe2O3/clay > Fe2O3/sandstone, the iron oxide catalysts on clay being most selective. The obtained experimental data confirm that natural materials (oil-bearing rocks: basalt, clay, and sandstone) may be used for the development of catalytic systems for reactions in oil beds and of advanced technologies for increasing the oil recovery.

Keywords

rock matrices oil production stimulation high-viscosity oil asphaltenes hydrocracking decomposition of ammonium nitrate in situ catalytic processes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Almao, P.P., Can. J. Chem. Eng., 2012, vol. 90, no. 2, pp. 320–329.CrossRefGoogle Scholar
  2. 2.
    Hamedi, S.Y. and Babadagli, T., SPE Reservoir Eval. Eng., 2013, vol. 16, no. 3, pp. 333–344.CrossRefGoogle Scholar
  3. 3.
    Peng, B., Zhang, L., Luo, J., Wang, P., Ding, B., Zeng, M., and Cheng, Z., RSC Adv., 2017, vol. 7, no. 51, pp. 32246–32254. http://dx.doi.org/doi 10.1039/C7RA05592GCrossRefGoogle Scholar
  4. 4.
    Muggeridge, A., Cockin, A., Webb, K., Frampton, H., Collins, I., Moulds, T., and Salino, P., Philos. Trans. R. Soc., A. https://doi.org/10.1098/rsta.2012.0320
  5. 5.
    Dobrynkin, N.M., Batygina, M.V., and Noskov, A.S., J. Sustainable Dev. Energy, Water Environ. Syst., 2017, vol. 5, no. 3, pp. 408–416. http://dx.doi.org/doi 10.13044/j.sdewes.d5.0151CrossRefGoogle Scholar
  6. 6.
    Brown, P.L. and Ekberg, C., Hydrolysis of Metal Ions, Weinheim: Wiley-VCH, 2016.CrossRefGoogle Scholar
  7. 7.
    Štajdohar, J., Ristic, M., and Music, S., J. Mol. Struct., 2013, vol. 1044, no. 24, pp. 290–298. https://doi.org/10.1016/j.molstruc.2012.09.073 CrossRefGoogle Scholar
  8. 8.
    Zhu, M., Wang, Y., Meng, D., Qin, X., and Diao, G., J. Phys. Chem. C, 2012, vol. 116, no. 30, pp. 16276–16285. https://pubs.acs.org/doi/10.1021/jp304041m CrossRefGoogle Scholar
  9. 9.
    Tadica, M., Citakovic, N., Panjan, M., Stojanovic, Z., Markovic, D., and Spasojevic, V., J. Alloys Compd., 2011, vol. 509, no. 28, pp. 7639–7644. https://doi.org/10.1016/j.jallcom.2011.04.117 CrossRefGoogle Scholar
  10. 10.
    Kandori, K. and Ishikawa, T., Colloid Polym. Sci., 2004, vol. 282, no. 10, pp. 1118–1125.CrossRefGoogle Scholar
  11. 11.
    Voskresenskii, P.I., Tekhnika laboratornykh rabot (Technique of Laboratory Works), Moscow: Khimiya, 1973.Google Scholar
  12. 12.
    Snyder, R.L., Fiala, J., and Bunge, H.J., Defect and Microstructure Analysis by Diffraction, New York: Oxford University Press, 1999.Google Scholar
  13. 13.
    Savara, A., Li, M.-J., Sachtler, W.M.H., and Weitz, E., Appl. Catal., B, 2008, vol. 81, nos. 3–4, pp. 251–257. https://doi.org/10.1016/j.apcatb.2007.12.008 CrossRefGoogle Scholar
  14. 14.
    Vandegrift, G.F., Technical Report ANL-00/25, 2000. http://www.ipd.anl.gov/anlpubs/2000/12/38162.pdf.pdf. Cited October 11, 2017.
  15. 15.
    Moroz, N.A., Kobzev, A.V., Loboiko, A.Ya., Bagdasaryan, V.S., and Vorozhbiyan, M.I., Integr. Tekhnol. Energosberezhenie, 2004, no. 1, pp. 82–84. http://repository.kpi.kharkov.ua/bitstream/KhPI-Press/2231/1/ITE_2004_1_Kobzev_Izucheniye%20protsessa.pdf. Cited November 10, 2017.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. M. Dobrynkin
    • 1
  • M. V. Batygina
    • 1
  • A. S. Noskov
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations