Advertisement

Catalysis in Industry

, Volume 9, Issue 3, pp 221–229 | Cite as

Catalytic steam cracking of heavy crude oil with molybdenum and nickel nanodispersed catalysts

  • O. O. Mironenko
  • G. A. Sosnin
  • P. M. Eletskii
  • Yu. K. Gulyaeva
  • O. A. Bulavchenko
  • O. A. Stonkus
  • V. O. Rodina
  • V. A. Yakovlev
Catalysis in Petroleum Refining Industry
  • 56 Downloads

Abstract

The catalytic steam cracking (CSC) of heavy crude oil with high amount of sulfur (4.3 wt %) and high-boiling fractions (>500°C) is studied using Mo and Ni nanodispersed catalysts under static conditions (in an autoclave) at 425°C. Experiments on thermal cracking, steam cracking, and catalytic cracking without water are performed to compare and identify the features of CSC. The relationship between the composition and properties of liquid and gaseous products and process conditions, the type of catalyst, and water is studied. Using Ni catalyst in CSC raises the H: C ratio (1.69) in liquid products, compared to other types of cracking, but also increases the yield of coke and gaseous products, so the yield of liquid products falls. When Mo catalyst is used in CSC, low-viscosity semi-synthetic oil with a higher H: C ratio (1.70) and the lowest amount of sulfur in liquid products (2.8 wt %) is produced. XRF and HRTEM studies of the catalyst-containing solid residue (coke) show that under CSC conditions, nickel is present in the form of well-crystallized nanoparticles of Ni9S8 15–40 nm in size, while molybdenum exists in two phases: MoO2 and MoS2, the ratio between which depends on the conditions of the transformation of heavy crude oil. The findings indicate that CSC is a promising process for improving heavy crude oil.

Keywords

catalytic steam cracking nickel molybdenum dispersed catalyst heavy crude oil 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sukhanov, A.A. and Petrova, Yu.E., Neftegazov. Geol. Teor. Prakt., 2008, no. 3, pp. 1–11.Google Scholar
  2. 2.
    Eletskii, P.M., Mironenko, O.O., Sosnin, G.A., Bulavchenko, O.A., Stonkus, O.A., and Yakovlev, V.A., Catal. Ind., 2016, vol. 8, no. 4, pp. 328–335.CrossRefGoogle Scholar
  3. 3.
    Tumanyan, B.P., Petrukhina, N.N., Kayukova, G.P., Nurgaliev, D.K., Foss, L.E., and Romanov, G.V., Russ. Chem. Rev., 2015, vol. 84, no. 11, pp. 1145–1175.CrossRefGoogle Scholar
  4. 4.
    Olvera, J.N.R., Gutiérrez, G.J., Serrano, J.A.R., Ovando, A.M., Febles, V.G., and Arceo, L.D.B., Catal. Commun., 2014, vol. 43, pp. 131–135.CrossRefGoogle Scholar
  5. 5.
    Petrukhina, N.N. Kayukova G.P., Romanov G.V., Tumanyan B.P., Foss, L.E., Kosachev, I.P., Musin, R.Z., Ramazanova, A.I., and Vakhin, A.V., Chem. Technol. Fuels Oils, 2014, vol. 50, no. 4, pp. 315–326.CrossRefGoogle Scholar
  6. 6.
    Shokrlu, Y.H. and Babadagli, T., J. Pet. Sci. Eng., 2014, vol. 119, pp. 210–220.CrossRefGoogle Scholar
  7. 7.
    Desouky, S., Al Sabagh, A., Betiha, M., Badawi, A., Ghanem, A., and Khalil, S., Int. J. Mol. Nucl. Mater. Metall. Eng., 2013, vol. 7, no. 8, pp. 638–643.Google Scholar
  8. 8.
    Lyubimenko, V.A., Petrukhina, N.N., Tumanyan, B.P., and Kolesnikov, I.M., Chem. Technol. Fuels Oils, 2012, vol. 48, no. 4, pp. 292–301.CrossRefGoogle Scholar
  9. 9.
    Muraza, O. and Galadima, A., Fuel, 2015, vol. 157, pp. 219–231.CrossRefGoogle Scholar
  10. 10.
    Antipenko, V.R. and Golubina, O.A., Izv. Tomsk. Politech. Univ., 2006, vol. 309, no. 2, pp. 174–179.Google Scholar
  11. 11.
    Clark, P.D., Clarke, R.A., Hyne, J.B., and Lesage, K.L., AOSTRA J. Res., 1990, vol. 6, no. 1, pp. 53–64.Google Scholar
  12. 12.
    Fumoto, E., Tago, T., and Masuda, T., Energy Fuels, 2006, vol. 20, no. 1, pp. 1–6.CrossRefGoogle Scholar
  13. 13.
    Eletskii, P.M., Mironenko, O.O., Selishcheva, S.A., and Yakovlev, V.A., Catal. Ind., 2016, vol. 8, no. 3, pp. 217–223.CrossRefGoogle Scholar
  14. 14.
    Dutta, R.P., McCaffrey, W.C., Gray, M.R., and Muehlenbachs, K., Energy Fuels, 2000, vol. 14, no. 3, pp. 671–676.CrossRefGoogle Scholar
  15. 15.
    Angeles, M.J., Leyva, C., Ancheyta, J., and Ramírez, S., Catal. Today, 2014, vols. 220–222, pp. 274–294.CrossRefGoogle Scholar
  16. 16.
    US Patent 20130015100, 2013.Google Scholar
  17. 17.
    Machín, I., de Jesús, J.C., Rivas, G., Higuerey, I., Córdova, J., Pereira, P., Ruette, F., and Sierraalta, A., J. Mol. Catal. A: Chem., 2005, vol. 227, nos. 1–2, pp. 223–229.CrossRefGoogle Scholar
  18. 18.
    US Patent 5688395, 1997.Google Scholar
  19. 19.
    Hashemi, R., Nassar, N.N., and Almao, P.P., Energy Fuels, 2013, vol. 27, no. 4, pp. 2194–2201.CrossRefGoogle Scholar
  20. 20.
    Clark, P. D. and Kirk, M.J., Energy Fuels, 1994, vol. 8, pp. 380–387.CrossRefGoogle Scholar
  21. 21.
    Khadzhiev, S.N., Kadiev, Kh.M., and Kadieva, M.Kh., Pet. Chem., 2014, vol. 54, no. 5, pp. 323–346.CrossRefGoogle Scholar
  22. 22.
    Lv, G., Wang, F., Cai, W., and Zhang, X., Colloids Surf., A, 2014, vol. 447, no. 5, pp. 8–13.CrossRefGoogle Scholar
  23. 23.
    Visaliev, M.Ya., Shpirt, M.Ya., Kadiev, Kh.M., Dvorkin, V.I., Magomadov, E.E., and Khadzhiev, S.N., Solid Fuel Chem., 2012, vol. 46, no. 2, pp. 100–107.CrossRefGoogle Scholar
  24. 24.
    Scherrer, P., Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl., Fachgruppe 2, 1918, vol. 26, pp. 98–100.Google Scholar
  25. 25.
    Ancheyta, J. and Speight, J.G., Hydroprocessing of Heavy Oils and Residua, Boca Raton, FL: CRC Press, 2007.Google Scholar
  26. 26.
    Okunev, A.G., Parkhomchuk, E.V., Lysikov, A.I., Parunin, P.D., Semeikina, V.S., and Parmon, V.N., Russ. Chem. Rev., 2015, vol. 84, no. 9, pp. 981–999.CrossRefGoogle Scholar
  27. 27.
    Klimov, O.V., Koryakina, G.I., Gerasimov, E.Yu., Dik, P.P., Leonova, K.A., Budukva, S.V., Pereima, V.Yu., Uvarkina, D.D., Kazakov, M.O., and Noskov, A.S., Catal. Ind., 2015, vol. 7, no. 1, pp. 38–46.CrossRefGoogle Scholar
  28. 28.
    Kadiev, Kh.M., Khadzhiev, S.N., and Kadieva, M.Kh., Pet. Chem., 2013, vol. 53, no. 5, pp. 298–308.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • O. O. Mironenko
    • 1
  • G. A. Sosnin
    • 1
    • 2
  • P. M. Eletskii
    • 1
  • Yu. K. Gulyaeva
    • 1
  • O. A. Bulavchenko
    • 1
    • 2
  • O. A. Stonkus
    • 1
    • 2
  • V. O. Rodina
    • 1
  • V. A. Yakovlev
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations