Advertisement

Catalysis in Industry

, Volume 9, Issue 3, pp 204–211 | Cite as

New methods for the preparation of high-octane components from catalytic cracking olefins

  • A. S. KharitonovEmail author
  • D. P. Ivanov
  • M. V. Parfenov
  • L. V. Piryutko
  • S. V. Semikolenov
  • K. A. Dubkov
  • V. Yu. Pereima
  • A. S. Noskov
  • D. O. Kondrashev
  • A. V. Kleymenov
  • O. S. Vedernikov
  • S. E. Kuznetsov
  • V. V. Galkin
  • P. A. Abrashenkov
Catalysis in Petroleum Refining Industry

Abstract

A new method has been suggested for the preparation of high-octane components from the butane–butylene fraction (BBF) in two stages. At the first stage, the BBF olefins are oxidized with N2O into carbonyl compounds with high selectivity without forming the products of deep oxidation and water. The process occurs in the gas phase in a flow reactor without using a catalyst at a temperature of 400°C and a pressure of 2 MPa with high conversion of both olefins and nitrous oxide. The blending octane number of the oxidation product is 118–133 (RON) and 99–104 (MON). At the second stage, the mixture of carbonyl compounds is hydrogenated with hydrogen in the presence of the Ni/Al2O3 catalyst. The hydrogenation occurs at 150–160°C in a flow reactor in the gas phase. The aldehydes are completely transformed into alcohols, while the ketones can remain in the product under certain conditions. The blending octane number of the hydrogenation product is 111–112 (RON) and 95–96 (MON), which is smaller than for the BBF oxidation product, but larger than for the alkylate obtained in the course of conventional butene alkylation with isobutane (RON is 95–97 and MON is 93–95). Synthesis of high-octane components by this procedure can be useful in practice, especially in productions with huge release of nitrous oxide.

Keywords

high-octane component octane number carbonyl compounds ketones alcohols ethers oxidation of olefins hydrogenation of carbonyl compounds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kapustin, V.M., Karpov, S.A., and Tsarev, A.V., Oksigenaty v avtomobil’nykh benzinakh (Oxygenates in Automobile Gasolines), Moscow: KolosS, 2011.Google Scholar
  2. 2.
    Mirzoev, V. and Pishchuk, E., Probl. Mestnogo Samoupravleniya, 2010, no. 41. http://www.samoupravlenie.ru/41-10.php. Cited July 09, 2017.Google Scholar
  3. 3.
    Badia, J.H., Fité, C., Bringué, R., Ramírez, E., and Cunill, F., Appl. Catal., A, 2013, vol. 468, pp. 384–394.CrossRefGoogle Scholar
  4. 4.
    Jaime-Leal, J.E., Bonilla-Petriciolet, A., Segovia-Hernández, J.G., Hernández, S., and Hernández-Escoto, H., Chem. Eng. Process., 2013, vol. 72, pp. 31–41.CrossRefGoogle Scholar
  5. 5.
    Hazari, N., Iglesia, E., Labinger, J.A., and Simonetti, D.A., Acc. Chem. Res., 2012, vol. 45, no. 4, pp. 653–662.CrossRefGoogle Scholar
  6. 6.
    Simonetti, D.A., Ahn, J.H., and Iglesia, E., J. Catal., 2011, vol. 277, no. 2, pp. 173–195.CrossRefGoogle Scholar
  7. 7.
    Maksimov, A.L., Nekhaev, A.I., Ramazanov, D.N., Arinicheva, Yu.A., Dzyubenko, A.A., and Khadzhiev, S.N., Pet. Chem., 2011, vol. 51, no. 1, pp. 61–69.CrossRefGoogle Scholar
  8. 8.
    Hamadi, A.S., Tikrit J. Eng. Sci., 2010, vol. 17, no. 2, pp. 22–35.Google Scholar
  9. 9.
    Taraban’ko, V.E., Chernyak, M.Yu., Morozov, A.A., Kaigorodov, K.L., Bezborodov, Yu.N., Orlovskaya, N.F., and Nadeikin, I.V., Zh. Sib. Fed. Univ., Khim., 2014, vol. 7, no. 1, pp. 31–35.Google Scholar
  10. 10.
    Alotaibi, M.A., Kozhevnikova, E.F., and Kozhevnikov, I.V., J. Catal., vol. 293, pp. 141–144.Google Scholar
  11. 11.
    Bercaw, J.E., Hazari, N., Labinger, J.A., Scott, V.J., and Sunley, G.J., J. Am. Chem. Soc., 2008, vol. 130, no. 39, pp. 11988–11995.CrossRefGoogle Scholar
  12. 12.
    Panov G.I., Dubkov K.A., and Kharitonov A.S. in Modern Heterogeneous Oxidation Catalysis: Design, Reactions and Characterization, Mizuno, N., Ed., Weinheim: Wiley-VCH, 2009, pp. 217–252.CrossRefGoogle Scholar
  13. 13.
    Starokon, E.V., Dubkov, K.A., Babushkin, D.E., Parmon, V.N., and Panov, G.I., Adv. Synth. Catal., 2004, vol. 346, nos. 2–3, pp. 268–274.CrossRefGoogle Scholar
  14. 14.
    Hermans, I., Moens, B., Peeters, J., Jacobs, P., and Sels, B., Phys. Chem. Chem. Phys., 2007, vol. 9, no. 31, pp. 4269–4274.CrossRefGoogle Scholar
  15. 15.
    Hermans, I., Janssen, K., Moens, B., Philippaerts, A., Van Berlo, B., Peeters, J., Jacobs, P.A., and Sels, B.F., Adv. Synth. Catal., 2007, vol. 349, no. 10, pp. 1604–1608.CrossRefGoogle Scholar
  16. 16.
    Newman, S.G., Lee, K., Cai, J., Yang, L., Green, W.H., and Jensen, K., Ind. Eng. Chem. Res., 2015, vol. 54, no. 16, pp. 4166–4173.CrossRefGoogle Scholar
  17. 17.
    BASF starts up a new production facility for intermediates. http://www.chemicalonline.com/article.mvc/BASFStarts-Up-A-New-Production-Facility-For-0001. Cited July 10, 2017.Google Scholar
  18. 18.
    Uriarte, A.K., Stud. Surf. Sci. Catal., 2000, vol. 130, pp. 743–748.CrossRefGoogle Scholar
  19. 19.
    Evonik Official Website. http://corporate.evonik.com/ en/products/search-products/pages/product-details.aspx?pid=60222&pfsearch=o&pfcmd=letter. Cited July 10, 2017.Google Scholar
  20. 20.
    Su, M.-D., Liao, H.-Y., Chung, W.-S., and Chu, S.-Y., J. Org. Chem., 1999, vol. 64, no. 18, pp. 6710–6716.CrossRefGoogle Scholar
  21. 21.
    Avdeev, V.I., Ruzankin, S.Ph., and Zhidomirov, G.M., Chem. Commun., 2003, vol. 9, no. 1, pp. 42–43.CrossRefGoogle Scholar
  22. 22.
    Avdeev, V.I., Ruzankin, S.F., and Zhidomirov, G.M., Kinet. Catal., 2005, vol. 46, no. 2, pp. 177–188.CrossRefGoogle Scholar
  23. 23.
    Kirmse, W.M., Carbene Chemistry, New York: Academic Press, 1964Google Scholar
  24. 24.
    Nefedov, O.M., Ioffe, A.I., and Menchikov, L.G., Khimiya karbenov (Carbene Chemistry), Moscow: Khimiya, 1990.Google Scholar
  25. 25.
    Emel’yanov, V.E. and Skvortsov, V.N., Motornye topliva. Antidetonatsionnye svoistva i vosplamenyaemost' (Motor Fuels: Antiknock Properties and Inflammability), St. Petersburg: Tekhnika. TUMA GRUPP, 2006.Google Scholar
  26. 26.
    Reference Data for Hydrocarbons and Petro-Sulfur Compounds, Bartlesville, OK: Philips Petroleum Company, 1945.Google Scholar
  27. 27.
    TR TS (Customs Union Technical Regulation) 013/2011: Requirements to Automobile and Aviation Gasoline, Diesel and Ship Fuel, Jet Engine Fuel and Furnace Boiler Oil, 2011.Google Scholar
  28. 28.
    GOST R (Russian State Standard) 52033-2003: Motor Vehicles with Gasoline Engines. Emissions of the Exhaust Gas Pollutants. Norms and Methods of Control for the Estimation of Technical State, 2003.Google Scholar
  29. 29.
    Kapustin, V.M. and Gureev, A.A., Tekhnologiya pererabotki nefti (Oil Refining Technology), vol. 2: Destruktivnye protsessy (Destructive Processes), Moscow: KolosS, 2007.Google Scholar
  30. 30.
    Parmon, V.N., Panov, G.I., Uriarte, A., and Noskov, A.S., Catal. Today, 2005, vol. 100, nos. 1–2, pp. 115–131.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. S. Kharitonov
    • 1
    Email author
  • D. P. Ivanov
    • 1
  • M. V. Parfenov
    • 1
  • L. V. Piryutko
    • 1
  • S. V. Semikolenov
    • 1
  • K. A. Dubkov
    • 1
  • V. Yu. Pereima
    • 1
  • A. S. Noskov
    • 1
  • D. O. Kondrashev
    • 2
  • A. V. Kleymenov
    • 2
  • O. S. Vedernikov
    • 2
  • S. E. Kuznetsov
    • 3
  • V. V. Galkin
    • 3
  • P. A. Abrashenkov
    • 3
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Gazprom NeftSt. PetersburgRussia
  3. 3.Gazpromneft-MNPZMoscowRussia

Personalised recommendations