Advertisement

Catalysis in Industry

, Volume 9, Issue 3, pp 257–263 | Cite as

Preparing bioethanol from oat hulls pretreated with a dilute nitric acid: Scaling of the production process on a pilot plant

  • O. V. Baibakova
  • E. A. Skiba
  • V. V. Budaeva
  • G. V. Sakovich
Biocatalysis

Abstract

The full cycle of bioethanol production from pretreated oat hulls is scaled for a pilot plant. The one-stage pretreatment of oat hulls with a dilute nitric acid at atmospheric pressure is scaled for a 250-L reactor. The total amount of hydrolysable polysaccharides in the resulting substrate is 87.2%. Using the commercially available enzyme preparations CelloLux-A and BrewZyme BGX and the industrial strain BKPM Y-1693 of Saccharomyces cerevisiae yeast, the process of enzymatic hydrolysis and alcoholic fermentation is successfully scaled for a 63-L reactor. The scaling factor is 1: 400. Bioethanol is obtained with a high yield of 17.9 daL/t. After rectification, the test sample of bioethanol meets the standards for high-purity alcohol from food raw materials according to the mass concentration of aldehydes, esters, and by the content of methanol.

Keywords

scaling oat hulls pretreatment nitric acid enzymatic hydrolysis alcoholic fermentation bioethanol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vohra, M., Manwar, J., Manmode, R., Padgilwar, S., and Patil, S., J. Environ. Chem. Eng., 2014, vol. 2, no. 1, pp. 573–584.CrossRefGoogle Scholar
  2. 2.
    Jordan, D.B., Bowman, M.J., Braker, J.D., Dien, B.S., Hector, R.E., Lee, C.C., Mertens, J.A., and Wagschal, K., Biochem. J., 2012, vol. 442, no. 2, pp. 241–252. doi 10.1042/BJ20111922CrossRefGoogle Scholar
  3. 3.
    Somerville, C., Youngs, H., Taylor, C., Davis, S.C., and Long, S.P., Science, 2010, vol. 329, no. 5993, pp. 790–792.CrossRefGoogle Scholar
  4. 4.
    Murzin, D.Yu. and Simakova, I.L., Catal. Ind., 2011, vol. 3, no. 3, pp. 218–249.CrossRefGoogle Scholar
  5. 5.
    Limayema, A. and Ricke, S.C., Prog. Energy Combust. Sci., 2012, vol. 38, no. 4, pp. 449–467.CrossRefGoogle Scholar
  6. 6.
    Sarkar, N., Ghosh, S.K., Bannerjee, S., and Aikat, K., Renewable Energy, 2012, vol. 37, no. 1, pp. 19–27. doi 10.1016/j.renene.2011.06.045CrossRefGoogle Scholar
  7. 7.
    Kumar, J., Reetu, S., and Tewari, L.S., Biotechnology, 2015, no. 5, pp. 337–353. doi 10.1007/s13205-014-0246-5Google Scholar
  8. 8.
    Xue, S., Lewandowski, I., Wang, X., and Yi, Z., Renewable Sustainable Energy Rev., 2016, vol. 54, pp. 932–943.CrossRefGoogle Scholar
  9. 9.
    Cha, Y.-L., An, G.H., Yang, J., Moon, Y.-H., and Ahn, J.-W., Renewable Energy, 2015, vol. 80, pp. 259–265.CrossRefGoogle Scholar
  10. 10.
    Inbicon Official Website. http://www.inbicon.com/en/ global-solutions. Cited July 7, 2017.Google Scholar
  11. 11.
    Larsen, J., Østergaard Petersen, M., Thirup, L., Wen Li, H., and Krogh Iversen, F., Chem. Eng. Technol., 2008, vol. 31, no. 5, pp. 765–772.CrossRefGoogle Scholar
  12. 12.
    Lawford, H.G., Rousseau, J.D., and Tolan, J.S., Appl. Biochem. Biotechnol., 2001, vol. 91, pp. 133–146.CrossRefGoogle Scholar
  13. 13.
    Mood, S.H., Golfeshan, A.H., Tabatabaei, M., Jouzani, G.S., Najafi, G.H., Gholami, M., and Ardjmand, M., Renewable Sustainable Energy Rev., 2013, vol. 27, pp. 77–93.CrossRefGoogle Scholar
  14. 14.
    Maurya, D., Singla, A., and Negi, S., Biotechnology, 2015, no. 5, pp. 597–609. doi 10.1007/s13205-015-0279-4Google Scholar
  15. 15.
    Xu, Z. and Huang, F., Appl. Biochem. Biotechnol., 2014, vol. 174, no. 1, pp. 43–62. doi 10.1007/s12010-014-1015-yCrossRefGoogle Scholar
  16. 16.
    Gromov, N.V., Taran, O.P., Sorokina, K.N., Mishchenko, T.I., Utandi, Sh., and Parmon, V.N., Catal. Ind., 2016, vol. 8, no. 2, pp. 176–186.CrossRefGoogle Scholar
  17. 17.
    Chiaramonti, D., Rizzo, A.M., Prussi, M., Tedeschi, S., Zimbardi, F., Braccio, G., Viola, E., and Pardelli, P.T., Biomass Convers. Biorefin., 2011, vol. 1, no. 1, pp. 9–15. doi 10.1007/s13399-010-0001-zCrossRefGoogle Scholar
  18. 18.
    Gusakov, A.V., Trends Biotechnol., 2011, vol. 29, no. 9, pp. 419–425.CrossRefGoogle Scholar
  19. 19.
    Chekushina, V., Dotsenko, G.S., Kondratieva, E.G., and Sinitsyn, A.P., Biotechnol. Russ., 2013, no. 3, pp. 58–68.Google Scholar
  20. 20.
    Novozhilov, E.V., Aksenov, A.S., Demidov, M.L., Chukhchin, D.G., Dotsenko, G.S., Osipov, D.O., and Sinitsyn, A.P., Catal. Ind., 2014, vol. 6, no. 4, pp. 348–354.CrossRefGoogle Scholar
  21. 21.
    Paschos, T., Xiros, C., and Christakopoulos, P., Ind. Crops Prod., 2015, vol. 76, pp. 793–802.CrossRefGoogle Scholar
  22. 22.
    Liu, Z.-H., Qin, L., Zhu, J.-Q., Li, B.-Z., and Yuan, Y.-J., Biotechnol. Biofuels, 2014, vol. 7, p. 167.CrossRefGoogle Scholar
  23. 23.
    Krishna, S.H., Reddy, T.J., and Chowdary, G.V., Bioresour. Technol., 2001, vol. 77, no. 2, pp. 193–196.CrossRefGoogle Scholar
  24. 24.
    Budaeva, V.V., Skiba, E.A., Makarova, E.I., Zolotukhin, V.N., Sakovich, G.V., Udoratina, E.V., Kuvshinova, L.A., Shcherbakova, T.P., and Kuchin, A.V., Polzunovskii Vestn., 2013, no. 1, pp. 215–219.Google Scholar
  25. 25.
    Dotsenko, G.S., Osipov, D.O., Zorov, I.N., and Sinitsyn, A.P., Catal. Ind., 2016, vol. 8, no. 1, pp. 88–94. doi 10.1134/S2070050416010049CrossRefGoogle Scholar
  26. 26.
    Budaeva, V.V., Skiba, E.A., Baibakova, O.V., Makarova, E.I., Orlov, S.E., Kukhlenko, A.A., Udoratina, E.V., Shcherbakova, T.P., Kuchin, A.V., and Sakovich, G.V., Catal. Ind., 2016, vol. 8, no. 1, pp. 81–87. doi 10.1134/S2070050416010025CrossRefGoogle Scholar
  27. 27.
    Skiba, E.A., Momot, T.O., Bychin, N.V., and Zolotukhin, V.N., Polzunovskii Vestn., 2013, no. 3, pp. 197–202.Google Scholar
  28. 28.
    Skiba, E.A., Budaeva, V.V., Baibakova, O.V., Udoratina, E.V., Shakhmatov, E.G., Shcherbakova, T.P., Kuchin, A.V., and Sakovich, G.V., Catal. Ind., 2016, vol. 8, no. 2, pp. 168–175. doi 10.1134/S2070050416020100CrossRefGoogle Scholar
  29. 29.
    Baibakova, O.V. and Skiba, E.A., Polzunovskii Vestn., 2014, no. 3, pp. 181–185.Google Scholar
  30. 30.
    Obolenskaya, A.V., El’nitskaya, Z.P., and Leonovich, A.A., Laboratornye raboty po khimii drevesiny i tsellyulozy (Laboratory Works on the Chemistry of Wood and Cellulose), Moscow: Ekologiya, 1991.Google Scholar
  31. 31.
    Makarova, E.I., Budaeva, V.V., and Mitrofanov, R.Yu., Polzunovskii Vestn., 2010, no. 4/1, pp. 192–198.Google Scholar
  32. 32.
    GOST R (Russian State Standard) 51135-1998: Liqueur-Vodka Products. Acceptance Rules and Test Methods, 1998.Google Scholar
  33. 33.
    GOST R (Russian State Standard) 51786-2001: Vodka and Ethanol from Food Raw Materials. Gas-Chromatographic Method for Determination of Authenticity, 2001.Google Scholar
  34. 34.
    Rimareva, L.V. and Vorontsova, N.N., Mikrobiologicheskii kontrol’ spirtovogo i fermentnogo proizvodstv (Microbial Control of Alcohol and Enzyme Production), Moscow: Rossel’khozakademiya, 2005.Google Scholar
  35. 35.
    Khol’kin, Yu.I., Tekhnologiya gidroliznykh proizvodstv. Uchebnik dlya vuzov (Technology of Hydrolytic Production: Textbook for Universities), Moscow: Lesnaya promyshlennost’, 1989.Google Scholar
  36. 36.
    GOST (Soviet State Standard) 17299-78: Technical Ethyl Alcohol. Specifications, 1978.Google Scholar
  37. 37.
    GOST (Russian State Standard) 5962-2013: Rectified Ethyl Alcohol from Edible Raw Materials. Specifications, 2013.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • O. V. Baibakova
    • 1
  • E. A. Skiba
    • 1
  • V. V. Budaeva
    • 1
  • G. V. Sakovich
    • 1
  1. 1.Institute of Problems of Chemical and Energy Technologies, Siberian BranchRussian Academy of SciencesBiyskRussia

Personalised recommendations