Catalysis in Industry

, Volume 9, Issue 2, pp 136–145 | Cite as

Reactivation of an industrial batch of CoMo/Al2O3 catalyst for the deep hydrotreatment of oil fractions

  • S. V. BudukvaEmail author
  • O. V. Klimov
  • A. S. Noskov
  • V. A. Golovachev
  • D. O. Kondrashev
  • A. V. Kleimenov
  • R. V. Esipenko
  • A. P. Kubarev
  • D. V. Khrapov
Catalysis in Petroleum Refining Industry


The results from industrial tests of technology developed earlier for the reactivation of CoMo/Al2O3 catalyst for the deep hydrotreating of diesel fuel, including the oxidative regeneration of the catalyst with subsequent treatment using organic complexing agents, are presented. Samples of the catalyst, fresh and at different stages of its reactivation, are investigated using a set of analytical and physicochemical methods. The chemical composition, textural characteristics, mechanical strength, structure of the active sulfide component (TEM, XPS) are determined. Catalytic tests are performed that include lifetime tests (360 h) in the hydrotreatment of a straight-run diesel fraction. The restoration of the physicochemical and catalytic properties is observed for a sample subjected to oxidative regeneration with subsequent treatment using organic complexing agents. An industrial batch of deep hydrotreatment catalyst reactivated by this technology is loaded into an L-24-6 industrial plant facility and ensures stable purification of straight-run diesel fuel containing up to 10% of light catalytic cracking gas oil to a residual sulfur content of less than 10 ppm. Comparison of the obtained results and data on the industrial operation of fresh catalysts shows that the technology developed by the Institute of Catalysis and PAO Gazprom Neft ensures almost complete restoration of the properties of the deactivated catalysts.


hydrotreatment regeneration reactivation organic complex agents catalysts diesel fuel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    On the Introduction of Amendments to the Technical Regulations on the Requirements to Automobile and Aviation Gasoline, Diesel and Ship Fuel, Jet Engine Fuel, and Furnace Oil. Russian Federation Government decree no. 748, September 7, 2011.Google Scholar
  2. 2.
    Porocel Official Website. Cited May 25, 2016.Google Scholar
  3. 3.
    EURECAT Official Website. Cited May 25, 2016.Google Scholar
  4. 4.
    Budukva, S.V., Klimov, O.V., and Noskov, A.S., Catal. Ind., 2015, vol. 7, no. 3, pp. 214–220.CrossRefGoogle Scholar
  5. 5.
    Bukhtiyarova, G., Klimov, O., Pashigreva, A., Aleksandrov, P., Kashkin, V., and Noskov, A., Oil Gas J., 2010, no. 3, pp. 58–66.Google Scholar
  6. 6.
    RF Patent 2484896, Byull. Izobret., 2013, no. 17.Google Scholar
  7. 7.
    Eijsbouts, S., van den Oetelaar, L.C.A., and van Puijenbroek, R.R., J. Catal., 2005, vol. 229, no. 2, pp. 352–364.CrossRefGoogle Scholar
  8. 8.
    Lauritsen, J.V., Kibsgaard, J., Olesen, G.H., Moses, P.G., Hinnemann, B., Helveg, S., Nørskov, J.K., Clausen, B.S., Topsøe, H., Lægsgaard, E., and Besenbacher, F., J. Catal., 2007, vol. 249, no. 2, pp. 220–233.CrossRefGoogle Scholar
  9. 9.
    Eijsbouts, S., Heinerman, J.J.L., and Elzerman, H.J.W., Appl. Catal., A, 1993, vol. 105, no. 1, pp. 69–82.CrossRefGoogle Scholar
  10. 10.
    Fujikawa, T., Kimura, H., Kiriyama, K., and Hagiwara, K., Catal. Today, 2006, vol. 111, nos. 3–4, pp. 188–193.CrossRefGoogle Scholar
  11. 11.
    Furuhashi, H., Inagaki, M., and Naka, S., J. Inorg. Nucl. Chem., 1973, vol. 35, no. 8, pp. 3009–3014.CrossRefGoogle Scholar
  12. 12.
    Okamoto, Y., Hioka, K., Arakawa, K., Fujikawa, T., Ebihara, T., and Kubota, T., J. Catal., 2009, vol. 268, no. 1, pp. 49–59.CrossRefGoogle Scholar
  13. 13.
    Yoshimura, Y., Sato, T., Shimada, H., Matsubayashi, N., Imamura, M., Nishijima, A., Yoshitomi, S., Kameoka, T., and Yanase, H., Energy Fuels, 1994, vol. 8, no. 2, pp. 435–445.CrossRefGoogle Scholar
  14. 14.
    Topsøe, H., Appl. Catal., A, 2007, vol. 322, pp. 3–8.CrossRefGoogle Scholar
  15. 15.
    Mazoyer, P., Geantet, C., Diehl, F., Loridant, S., and Lacroix, M., Catal. Today, 2008, vol. 130, no. 1, pp. 75–79.CrossRefGoogle Scholar
  16. 16.
    Topsøe, H., Clausen, B.S., Candia, R., Wivel, C., and Mørup, S., J. Catal., 1981, vol. 68, no. 2, pp. 433–452.CrossRefGoogle Scholar
  17. 17.
    Alstrup, I., Chorkendorff, I., Candia, R., Clausen, B.S., and Topsøe, H., J. Catal., 1982, vol. 77, no. 2, pp. 397–409.CrossRefGoogle Scholar
  18. 18.
    Eijsbouts, S., Heinerman, J.J.L., and Elzerman, H.J.W., Appl. Catal., A, 1993, vol. 105, no. 1, pp. 53–68.CrossRefGoogle Scholar
  19. 19.
    Miller, J.T., Marshall, C.L., and Kropf, A.J., J. Catal., 2001, vol. 202, no. 1, pp. 89–99.CrossRefGoogle Scholar
  20. 20.
    Bouwens, S.M.A.M., van Veen, J.A.R., Koningsberger, D.C., De Beer, V.H.J., and Prins, R., J. Phys. Chem., 1991, vol. 95, no. 1, pp. 123–134.CrossRefGoogle Scholar
  21. 21.
    Ma, X., Sakanishi, K., Isoda, T., and Mochida, I., Ind. Eng. Chem. Res., 1995, vol. 34, no. 3, pp. 748–754.CrossRefGoogle Scholar
  22. 22.
    Startsev, A.N. and Zakharov, I.I., Russ. Chem. Rev., 2003, vol. 72, no. 6, pp. 517–536.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. V. Budukva
    • 1
    Email author
  • O. V. Klimov
    • 1
  • A. S. Noskov
    • 1
  • V. A. Golovachev
    • 2
  • D. O. Kondrashev
    • 2
  • A. V. Kleimenov
    • 2
  • R. V. Esipenko
    • 3
  • A. P. Kubarev
    • 3
  • D. V. Khrapov
    • 3
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.PAO Gazprom NeftSt. PetersburgRussia
  3. 3.AO Gazprom Neft-Omsk RefineryOmskRussia

Personalised recommendations