Catalysis in Industry

, Volume 8, Issue 4, pp 328–335 | Cite as

Investigating the process of heavy crude oil steam cracking in the presence of dispersed catalysts. II: Investigating the effect of Ni-containing catalyst concentration on the yield and properties of products

  • P. M. Eletskii
  • O. O. Mironenko
  • G. A. Sosnin
  • O. A. Bulavchenko
  • O. A. Stonkus
  • V. A. Yakovlev
Catalysis in Petroleum Refining Industry


The process of heavy crude oil (HCO) steam cracking under a batch regime at 425°C in the presence of Ni-containing nanodispersed catalyst (0.3–2.0 wt % with respect to Ni) is investigated. It is established that using this catalyst facilitates the upgrading of semi-synthetic oil produced from HCO: the Н: С ratio rises (in comparison to steam cracking with no catalyst), and the sulfur content and viscosity are reduced. The Н: С ratio in the liquid products grows slightly along with the catalyst content, but the yield of liquid products falls from 81 to 76% during the process with a simultaneous increase in the yield of coke and gaseous products (from 8 to 13 and from 2 to 4 wt %, respectively). Catalyst with coke residue is investigated by means of XRD and TEM. It is shown that nanosized particles of the Ni9S8 phase with sizes of 15–40 nm form from the catalyst precursor (Ni(NO3)2 · 6H2O) under the process conditions. The selection and investigation of catalytic systems for heavy crude oil cracking in the presence of superheated steam, along with optimization of the process conditions, are required to further enhance the efficiency of the upgrading process.


heavy crude oil catalytic steam cracking nanodispersed catalyst nickel heavy oil upgrading 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    BP energy outlook 2016. Cited April 5, 2016.Google Scholar
  2. 2.
    Alboudwarej, H., Felix, J., Taylor, S., Badry, R., Bremner, C., Brough. B., Skeates, C., Baker, A., Palmer, D., Pattison, K., Beshry, M., Krawchuk, P., Brown, G., Calvo, R., Cañas Triana, J.A., Hathcock, R., Koerner, K., Hughes, T., Kundu, D., López de Cárdenas, J., and West, C., Oilfield Rev., 2006, vol. 18, no. 2, pp. 34–53.Google Scholar
  3. 3.
    World Energy Council 2013: World energy resources. A summary. Cited April 5, 2016.Google Scholar
  4. 4.
    World Oil Outlook 2015: Organization of the Petroleum Exporting Countries OPEC Secretariat.; Cited April 5, 2016.Google Scholar
  5. 5.
    Sukhanov. A.A. and Petrova, Yu. E., Neftegazov. Geol., Teor. Prakt., 2008, no. 3, pp. 1–11.Google Scholar
  6. 6.
    US Patent 20130015100, 2013.Google Scholar
  7. 7.
    Hasan, S.W., Ghannam, M.T., and Esmail, N., Fuel, 2010, vol. 89, no. 5. pp. 1095–1100.CrossRefGoogle Scholar
  8. 8.
    Doust, A.M., Rahimi, M., and Feyzi, M., Chem. Eng. Process., 2015, vol. 95, pp. 353–361.CrossRefGoogle Scholar
  9. 9.
    Castañeda, L.C., Muñoz, J.A.D., and Ancheyta, J., Catal. Today, 2014, vol. 220–222, pp. 248–273.CrossRefGoogle Scholar
  10. 10.
    Machín, I., de Jesus, J.C., Rivas, G., Higuerey, I., Córdova, J., Pereira, P., Ruette, F., and Sierraalta, A., J. Mol. Catal. A: Chem., 2005, vol. 227, nos. 1–2, pp. 223–229.CrossRefGoogle Scholar
  11. 11.
    Fumoto, E., Tago, T., Tsuji, T., and Masuda, T., Energy Fuels, 2004, vol. 18, no. 6, pp. 1770–1774.CrossRefGoogle Scholar
  12. 12.
    Fumoto, E., Tago, T., and Masuda, T., Energy Fuels, 2006, vol. 20, no. 1, pp. 1–6.CrossRefGoogle Scholar
  13. 13.
    Hashemi, R., Nassar, N.N., and Almao, P.P., Energy Fuels, 2013, vol. 27, no. 4, pp. 2194–2201.CrossRefGoogle Scholar
  14. 14.
    US Patent 5688395, 1997.Google Scholar
  15. 15.
    Sharypov, V.I., Kuznetsov, B.N., Beregovtsova, N.G., Baryshnikov, S.V., and Sidel’nikov, V.N., Fuel, 1996, vol. 75, no. 7, pp. 791–794.CrossRefGoogle Scholar
  16. 16.
    Khadzhiev, S.N., Kadiev, Kh.M., and Kadieva, M.Kh., Pet. Chem., 2014, vol. 54, no. 5, pp. 323–346.CrossRefGoogle Scholar
  17. 17.
    Angeles, M.J., Leyva, C., Ancheyta, J., and Ramírez, S., Catal. Today, 2014, vols. 220–222, pp. 274–294.CrossRefGoogle Scholar
  18. 18.
    Lom, W.L. and Williams, A.F., Substitute Natural Gas: Manufacture and Properties, New York: Halsted Press, 1976.Google Scholar
  19. 19.
    Visaliev, M.Ya., Shpirt, M.Ya., Kadiev, Kh.M., Dvorkin, V.I., Magomadov, E.E., and Khadzhiev, S.N., Solid Fuel Chem., 2012, vol. 46, no. 2, pp. 100–107.CrossRefGoogle Scholar
  20. 20.
    Kadieva, M.Kh., Formation and properties of a catalyst nanoparticles–hydrocarbon medium system for the hydroconversion of high-molecular oil compounds, Cand. Sci. (Chem.) Dissertation, Moscow: Inst. Petrochem. Synth. Russ. Acad. Sci., 2011.Google Scholar
  21. 21.
    Lv, G., Wang, F., Cai, W., and Zhang, X., Colloids Surf., A, 2014, vol. 447, pp. 8–13.CrossRefGoogle Scholar
  22. 22.
    Ryabov, V.D., Khimiya nefti i gaza: uchebnoe posobie (Oil and Gas Chemistry: Tutorials), Moscow: Forum, Infra-M, 2014.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • P. M. Eletskii
    • 1
  • O. O. Mironenko
    • 1
  • G. A. Sosnin
    • 1
    • 2
  • O. A. Bulavchenko
    • 1
    • 2
  • O. A. Stonkus
    • 1
    • 2
  • V. A. Yakovlev
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations