Catalysis in Industry

, Volume 8, Issue 3, pp 217–223 | Cite as

Investigating the process of heavy crude oil steam cracking over disperse catalysts. I: Selection of optimal steam cracking conditions without catalyst

  • P. M. EletskiiEmail author
  • O. O. Mironenko
  • S. A. Selishcheva
  • V. A. Yakovlev
Catalysis in Petroleum Refining Industry


The process of heavy crude oil steam cracking using semi-flow (with respect to water) and steadystate regimes at 425°C without catalyst is investigated. It is established that in the case of a semi-flow regime, water acts predominantly as a physical agent facilitating the distillation of hydrocarbon fractions and thus preventing their transformation into petroleum coke. A reduction in coke yield is observed for a steady-state regime in comparison to a semi-flow regime; the introduction of water results in enhanced conversion of the high-boiling fraction and an increased yield of light fractions in the composition of liquid products. Based on the obtained data, it is concluded that water plays a positive role during the conversion of heavy crude oil, and that the steam cracking process is promising for production of lighter synthetic and/or semi-synthetic oils.


heavy oil steam cracking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Danilova, E., Khim. Zh., 2008, no. 12, pp. 34–37.Google Scholar
  2. 2.
    Murzagaleev, T.M., Vosmerikov, A.V., and Golovko, A.K., Izv. Tomsk. Poliech. Univ., 2011, vol. 319, no. 3, pp. 113–116.Google Scholar
  3. 3.
    Nikolin, I.V., Abstract of Papers, Trudy 2-ogo vserossiiskogo seminara “Nauka—fundament resheniya tekhnologicheskikh problem razvitiya Rossii” (Proc. 2nd All-Russia Seminar “Science as a Basis for the Solution of Engineering Problems in the Development of Russia), Yalchik, 2007, no. 2, p. 54.Google Scholar
  4. 4.
    Sukhanov, A.A. and Petrova, Yu.E., Neftegazov. Geol. Teor. Prakt., 2008, no. 3, pp. 1–11.Google Scholar
  5. 5.
    Ortiz-Moreno, H., Ramírez, J., Cuevas, R., Marroquín, G., and Ancheyta, J., Fuel, 2012, vol. 100, pp. 186–192.CrossRefGoogle Scholar
  6. 6.
    Kurochkin, A.K. and Toptygin, S.P., Sfera Neftegaz, 2010, no. 1, pp. 92–105.Google Scholar
  7. 7.
    Castañeda, L.C., Muñoz, J.A.D., and Ancheyta, J., Catal. Today, 2014, vols. 220–222, pp. 248–273.CrossRefGoogle Scholar
  8. 8.
    Hydroprocessing of Heavy Oils and Residua, Ancheyta, J. and Speight, J.G., Eds., Boca Raton, FL: CRC Press/Taylor and Francis, 2007.Google Scholar
  9. 9.
    Visaliev, M.Ya., Shpirt, M.Ya., Kadiev, Kh.M., Dvorkin, V.I., Magomadov, E.E., and Khadzhiev, S.N., Solid Fuel Chem., 2012, vol. 46, no. 2, pp. 100–107.CrossRefGoogle Scholar
  10. 10.
    Khadzhiev, S.N., Kadiev, Kh.M., and Kadieva, M.Kh., Pet. Chem., 2014, vol. 54, no. 5, pp. 323–346.CrossRefGoogle Scholar
  11. 11.
    Sharypov, V.I., Kuznetsov, B.N., Beregovtsova, N.G., Baryshnikov, S.V., and Sidel’nikov, V.N., Fuel, 1996, vol. 75, no. 7, pp. 791–794.CrossRefGoogle Scholar
  12. 12.
    US Patent 4743357, 1988.Google Scholar
  13. 13.
    Fumoto, E., Matsumura, A., Sato, S., and Takanohashi, T., Energy Fuels, 2009, vol. 23, no. 3, pp. 1338–1341.CrossRefGoogle Scholar
  14. 14.
    Galiev, R.G., Luganskii, A.I., Tret’yakov, V.F., Moroz, I.V., and Ermakov, A.N., Mir Nefteprod., 2007, no. 8, pp. 16–19.Google Scholar
  15. 15.
    RF Patent 2180676, 2001.Google Scholar
  16. 16.
    Speight, J.G., Sci. Iran., Trans. C, 2012, vol. 19, no. 3, pp. 569–573.CrossRefGoogle Scholar
  17. 17.
    Krivtsov, E.B., Karpov, Yu.O., and Golovko, A.K., Izv. Tomsk. Poliech. Univ., 2013, vol. 322, no. 3, pp. 86–91.Google Scholar
  18. 18.
    Petrukhina, N.N., Kayukova, G.P., Romanov, G.V., Tumanyan, B.P., Foss, L.E., Kosachev, I.P., Musin, R.Z., and Ramazanova, A.I., Vakhin. A.V, Chem. Technol. Fuels Oils, 2014, vol. 50, no. 4, pp. 315–326.CrossRefGoogle Scholar
  19. 19.
    Vezirov, R.R., Tuktarova, I.O., Yavgil’din, I.R., Kuz’mina, Z.F., Telyashev, E.G., Khairudinov, I.R., and Imashev, U.B., Chem. Technol. Fuels Oils, 1995, vol. 31, no. 6, pp. 285–287.CrossRefGoogle Scholar
  20. 20.
    Khairutdinov, V.F., Abstract of Papers, Materialy I Sankt-Peterburgskogo mezhdunarodnogo foruma “Innovatsionnye tekhnologii v oblasti polucheniya i primeneniya goryuchikh i smazochnykh materialov” (Proc. I St. Petersburg Int. Forum “Innovative Technologies in the Synthesis and Application of Combustibles and Lubricants), St. Petersburg, 2013, pp. 33–37.Google Scholar
  21. 21.
    Antipenko, V.R. and Golubina, O.A., Izv. Tomsk. Poliech. Univ., 2006, vol. 309, no. 3, pp. 177–179.Google Scholar
  22. 22.
    US Patent 3586621, 1971.Google Scholar
  23. 23.
    Kozhevnikov, I.V., Nuzndin, A.L., and Martyanov, O.N., J. Supercrit. Fluids, 2010, vol. 55, no. 1, pp. 217–222.CrossRefGoogle Scholar
  24. 24.
    US Patent 5688395, 1997.Google Scholar
  25. 25.
    Pinilla, J.L., Arcelus-Arrillaga, P., Puron, H., and Millan, M., Appl. Catal., A, 2013, no. 459, pp. 17–25.CrossRefGoogle Scholar
  26. 26.
    Zurita, M.J.P., Bartolini, M., Righi, T., Vitale, G., and Almao, P.P., Fuel, 2015, vol. 154, pp. 71–79.CrossRefGoogle Scholar
  27. 27.
    Hosseinpour, M., Fatemi, Sh., and Ahmadi, S. J., Fuel, 2015, vol. 159, pp. 538–549.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • P. M. Eletskii
    • 1
    Email author
  • O. O. Mironenko
    • 1
  • S. A. Selishcheva
    • 1
  • V. A. Yakovlev
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations