Catalysis in Industry

, Volume 7, Issue 2, pp 155–160 | Cite as

Vanadium oxide catalysts on structured microfiber supports for the selective oxidation of hydrogen sulfide

  • P. E. Mikenin
  • P. G. Tsyrul’nikov
  • Y. S. Kotolevich
  • A. N. Zagoruiko
Domestic Catalysts


Vanadium(V) oxide catalysts for the selective oxidation of hydrogen sulfide to sulfur on a nonporous glass-fiber support with a surface layer of a porous secondary support (SiO2) are studied. The catalysts are obtained by means of pulsed surface thermosynthesis. Such catalysts are shown to have high activity and acceptable selectivity in the industrially important region of temperatures below 200°C. A glass-fiber catalyst containing vanadium oxide (10.3 wt % of vanadium) in particular ensures the complete conversion of H2S at a temperature of 175°C and a reaction mixture hourly space velocity (RMHSV) of 1 cm3/(gcat s) with a sulfur yield of 67%; this is at least 1.35 times higher than for the traditional iron oxide catalyst. Using a structured glass-fiber woven support effectively minimizes diffusion resistance and greatly simplifies the scaleup of processes based on such catalysts. Such catalysts can be used for the cleansing of tail gases from Claus units and in other processes based on the selective oxidation of H2S.


hydrogen sulfide oxidation sulfur vanadium(V) oxide glass fibers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grunval’d, V.R., Tekhnologiya gazovoi sery (Technology of Gas Sulfur), Moscow: Khimiya, 1992.Google Scholar
  2. 2.
    Piéplu, A., Saur, O., Lavalley, J.-C., Legendre, O., and Nédez, C., Catal. Rev., 1998, vol. 40, no. 4, pp. 409–450.CrossRefGoogle Scholar
  3. 3.
    Zagoruiko, A.N., Shinkarev, V.V., Vanag, S.V., and Bukhtiyarova, G.A., Katal. Prom-sti, 2008, no. 5, p. 52.Google Scholar
  4. 4.
    Wieckowska, J., Catal. Today, 1995, vol. 24, no. 4, pp. 405–465.CrossRefGoogle Scholar
  5. 5.
    Lagas, J.A., Borsboom, J., and Heijkoop, G., Hydrocarbon Process., 1989, vol. 68, no. 4, pp. 40–42.Google Scholar
  6. 6.
    Van Nisselrooy, P.F.M.T. and Lagas, J.A., Catal. Today, 1993, vol. 16, no. 2, pp. 263–271.CrossRefGoogle Scholar
  7. 7.
    Zagoruiko, A.N., Mokrinskii, V.V., Chumakova, N.A., Bukhtiarova, G.A., Vanag, S.V., Borisova, T.V., Isaeva, G.G., Tsyrul’nikov, P.G., Smolikov, M.D., and Kozorog, B.G., Abstract of Papers, Proc. of the International Conference “Chemreactor-17”, Athens, 2006, p. 600.Google Scholar
  8. 8.
    Shinkarev, V.V., Glushenkov, A.M., Kuvshinov, D.G., and Kuvshinov, G.G., Appl. Catal., B, 2009, vol. 85, nos. 3–4, pp. 180–191.CrossRefGoogle Scholar
  9. 9.
    Marshneva, V.I. and Mokrinskii, V.V., Kinet. Katal., 1988, vol. 29, no. 4, p. 989.Google Scholar
  10. 10.
    Davydov, A.A., Marshneva, V.I., and Shepotko, M.L., Appl. Catal., A, 2003, vol. 244, no. 1, pp. 93–100.CrossRefGoogle Scholar
  11. 11.
    Kalinkin, P., Kovalenko, O., Lapina, O., Khabibulin, D., and Kundo, N., J. Mol. Catal. A: Chem., 2002, vol. 178, nos. 1–2, pp. 173–180.CrossRefGoogle Scholar
  12. 12.
    León, M., Jiménez-Jiménez, J., Jiménez-López, A., Rodríguez-Castellón, E., Soriano, D., and López Nieto, J.M., Solid State Sci., 2010, vol. 12, no. 6, pp. 996–1001.CrossRefGoogle Scholar
  13. 13.
    Barba, D., Palma, V., and Ciambelli, P., Int. J. Hydrogen Energy, 2013, vol. 38, no. 1, pp. 328–335.CrossRefGoogle Scholar
  14. 14.
    Soriano, M.D., López Nieto, J.M., Ivars, F., Concepción, P., and Rodríguez-Castellón, E., Catal. Today, 2012, vol. 192, no. 1, pp. 28–35.CrossRefGoogle Scholar
  15. 15.
    Bal’zhinimaev, B.S., Paukshtis, E.A., Vanag, S.V., Suknev, A.P., and Zagoruiko, A.N., Catal. Today, 2010, vol. 151, nos. 1–2, pp. 195–199.CrossRefGoogle Scholar
  16. 16.
    Zagoruiko, A.N. and Bal’zhinimaev, B.S., Khim. Promst. Segodnya, 2011, no. 2, p. 5.Google Scholar
  17. 17.
    Zagoruiko, A.N., Shinkarev, V.V., and Simonova, L.G., Abstract of Papers, Proc. of the III International Conference “Catalysis: Fundamentals and Application”, Novosibirsk, 2007, vol. 2, p. 580.Google Scholar
  18. 18.
    Shinkarev, V.V., Zagoruiko, A.N., Tsyrul’nikov, P.G., Afonasenko, T.N., Simonova, L.G., and Kuvshinov, G.G., Abstract of Papers, Materialy Vserossiiskoi nauchnoi molodezhnoi shkoly-konferentsii “Khimiya pod znakom SIGMA: issledovaniya, innovatsii, tekhnologii” (Proc. of the All-Russian Scientific Youth School-Conference “Chemistry under the SIGMA Sign: Studies, Innovations, Technologies), Omsk, 2008, p. 251.Google Scholar
  19. 19.
    Kotolevich, Y.S., Suprun, E.A., Sharafutdinov, M.R., Tsyrul’nikov, P.G., Salanov, A.N., and Goncharov, V.B., Izv. Vyssh. Uchebn. Zaved., Fiz., 2011, vol. 54, no. 12/2, p. 48.Google Scholar
  20. 20.
    Park, N.-K., Han, D.C., Lee, T.J., and Ryu, S.O., Fuel, 2011, vol. 90, no. 1, pp. 288–293.CrossRefGoogle Scholar
  21. 21.
    Vanag, S.V., Processes of SO2 oxidation to SO3 with the use of glass-fiber Pt-containing catalysts and their equipment implementation, Cand. Sci. (Chem.) Dissertation, Novosibirsk: Boreskov Inst. Catal., 2012.Google Scholar
  22. 22.
    RF Patent 101652, 2010.Google Scholar
  23. 23.
    RF Patent 145037, 2014.Google Scholar
  24. 24.
    Lopatin, S.A. and Zagoruiko, A.N., Chem. Eng. J., 2014, vol. 238, pp. 31–36.CrossRefGoogle Scholar
  25. 25.
    Zagoruiko, A.N., Lopatin, S.A., Bal’zhinimaev, B.S., Gil’mutdinov, N.R., Sibagatullin, G.G., Pogrebtsov, V.P., and Nazmieva, I.F., Catal. Ind., 2010, vol. 2, no. 2, pp. 113–117.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • P. E. Mikenin
    • 1
  • P. G. Tsyrul’nikov
    • 2
  • Y. S. Kotolevich
    • 2
  • A. N. Zagoruiko
    • 1
    • 3
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Institute of Hydrocarbon Processing, Siberian BranchRussian Academy of SciencesOmskRussia
  3. 3.Tomsk Polytechnical UniversityTomskRussia

Personalised recommendations