Advertisement

Catalysis in Industry

, Volume 6, Issue 4, pp 355–360 | Cite as

A setup for studying the biocatalytic conversion of products from the processing of nonwood raw materials

  • I. N. Pavlov
Biocatalysis

Abstract

An innovative setup (fermenter) for studying biocatalytic conversions of the products from processing renewable cellulose-containing raw materials is developed and manufactured. The setup is tested in the enzymatic hydrolysis of the Russian miscanthus cellulose pulp. The final results (the dependence of the concentration of the reducing substances in the hydrolysate on the duration of enzymatic hydrolysis) completely reproduce those obtained earlier on laboratory equipment. Digestion of the obtained hydrolysate performed in parallel in the laboratory and in the fermenter also produces similar results. The setup for preparing enzymatic hydrolysates suitable for use as substrates in the production of bioethanol and bacterial cellulose and the possibility of scaling the volumes of the processes of biocatalytic transformation thus prove promising.

Keywords

cellulose-containing raw materials fermenter biocatalysis glucose hydrolysate miscanthus bioethanol enzymatic biocatalyst digestion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Parmon, V.N. and Noskov, A.S., Katal. Prom-sti, 2007, no. 4, pp. 3–18.Google Scholar
  2. 2.
    Tret’yakov, V.F., Makarfi, Yu.I., Tret’yakov, K.V., Frantsuzova, N.A., and Talyshinskii, R.M., Catal. Ind., 2010, vol. 2, no. 4, pp. 402–420.CrossRefGoogle Scholar
  3. 3.
    Sergeeva, Ya.E., Galanin, L.A., Lunin, V.V., and Feofilova, E.P., Catal. Ind., 2011, vol. 3, no. 1, pp. 53–56.CrossRefGoogle Scholar
  4. 4.
    Murzin, D.Yu. and Simakova, I.L., Catal. Ind., 2011, vol. 3, no. 3, pp. 218–249.CrossRefGoogle Scholar
  5. 5.
    Nurtdinov, R.M., Mukhachev, S.G., Valeeva, R.T., Emel’yanov, V.M., Shavalieva, M.F., Shagivaeva, I.V., and Yakushev, I.A., Vestn. Kazan. Tekhnol. Univ., 2011, no. 2, p. 143–147.Google Scholar
  6. 6.
    Karpov, S.A., Khim. Tekhnol., 2007. no. 6, pp. 257–262.Google Scholar
  7. 7.
    Udoratina, E.V., Khim. Tekhnol., 2011, vol. 12, no. 3. pp. 157–162.Google Scholar
  8. 8.
    Moiseev, I.I., Plate, N.A., and Varfolomeev, S.D., Vestn. Ross. Akad. Nauk, 2006, vol. 76, no. 5, pp. 427.Google Scholar
  9. 9.
    Varfolomeev, S.D., Catal. Ind., 2011, vol. 3, no. 1, pp. 1–3.CrossRefGoogle Scholar
  10. 10.
    Yu Z., Jameel, H. et al., Biotechnol. Bioeng., 2012, vol. 109, no. 5, pp. 1131–1139.CrossRefGoogle Scholar
  11. 11.
    Kuznetsov, B.N., Catal. Ind., 2009, vol. 1, no. 3, pp. 250–259.CrossRefGoogle Scholar
  12. 12.
    Osipov, D.O., Rozhkova, A.M. Matys, V.Yu., Koshelev, A.V., Okunev, O.N., Rubtsova, E.A., Pravil’nikov, A.G., Zorov, I.N., Sinitsyna, O.A., Oveshnikov, I.N., Davidov, E.R., and Sinitsyn, A.P., Catal. Ind., 2011, vol. 3, no. 1, pp. 34–40.CrossRefGoogle Scholar
  13. 13.
    Skiba, E.A., Budaeva, V.V., Pavlov, I.N., Makarova, E.I., Zolotukhin, V.N., and Sakovich, G.V., Biotekhnologiya, 2012, no. 6, pp. 42–52.Google Scholar
  14. 14.
    Makarova, E.I., Budaeva, V.V., and Mitrofanov, R.Yu., Polzunov. Vestn., 2010, no. 4, pp. 192–198.Google Scholar
  15. 15.
    Makarova, E.I., Budaeva, V.V., and Skiba, E.A., Khim. Rastit. Syr’ya, 2013, no. 2, pp. 43–50.Google Scholar
  16. 16.
    Jordan, D.B., Bowman M.J., Braker J.D., Dien, B.S., Hector, R.E., Lee, C.C., Mertens, J.A., and Wagschal, K., Biochem. J, 2012, no. 442, pp. 241–252.Google Scholar
  17. 17.
    Taherzaden, M.J. and Karimi, K., BioResources, 2007, vol. 2, no. 4, pp. 707–738.Google Scholar
  18. 18.
    Zolotukhin, V.N., Budaeva, V.V., and Mitrofanov, R.Yu., Tezisy dokladov nauchno-techniheskoi konferencii, posvyashchennoi 50-letiyu otdela 20 FGUP FNPTS Altai (Proc. of Sci. and Techn. Conf. Dedicated to 50 years of the 20th Department of the Altai Research and Production Center), Biisk, 2010, pp. 55–57.Google Scholar
  19. 19.
    Zolotukhin, V.N. and Budaeva, V.V., New achievements in chemistry and chemical technology of plant raw materials, Materialy V Vseross. Conf. (Proc. V All-Russian Conf.), Barnaul, 2012, pp. 75–77.Google Scholar
  20. 20.
    Skiba E.A., New achievements in chemistry and chemical technology of plant raw materials, Materialy V Vseross. conf. (Proc. V All-Russian Conf.), Barnaul, 2012, pp. 384–386.Google Scholar
  21. 21.
    Sinitsyn, A.P., Gusakov, A.V., and Chernoglazov, V.M., Biokonversiya lignocelluloanykh materialov (Bioconversion of Lignocellulose Materials), Moscow: Mosk. Gos. Univ., 1995.Google Scholar
  22. 22.
    Makarova, E.I. and Budaeva, V.V., Alternative sources of raw materials and fuel, Tezisy dokladov III Mezhdunarodnoi nauchno-technocheskoi konferencii AIST — 2011 (Proc. III International Sci. and Techn. Conf. AIST — 2011), Minsk, 2011, p. 50.Google Scholar
  23. 23.
    Sakovich, G.V., Budaeva, V.V., Skiba, E.A., Makarova, E.I., Pavlov, I.N., Kortusov, A.N., and Zolotukhin, V.N., Polzunov. Vestn., 2012, no. 4. pp. 173–177.Google Scholar
  24. 24.
    Mitrofanov, R.Yu., Budaeva, V.V., and Sakovich, G.V., Khim. Interesakh Ustoich. Razvit., 2010, no. 5. pp. 587–592.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Institute of Problems of Chemical and Energy Technologies, Siberian BranchRussian Academy of SciencesBiiskRussia
  2. 2.Biisk Technological InstituteAltai State Technical UniversityBiiskRussia

Personalised recommendations