Advertisement

Catalysis in Industry

, Volume 5, Issue 4, pp 312–317 | Cite as

Catalytic reforming of hydrocarbon feedstocks into fuel for power generation units

  • M. M. Zyryanova
  • S. D. Badmaev
  • V. D. Belyaev
  • Yu. I. Amosov
  • P. V. Snytnikov
  • V. A. Kirillov
  • V. A. Sobyanin
Catalysis in Oil Refining

Abstract

The feasibility of realization of the multifuel operation principle, specifically, production of a hydrogen-containing gas from various types of hydrocarbon feedstocks using the same catalyst under similar reaction conditions is considered. The steam reforming of two types of hydrocarbon mixtures, namely diesel fuel satisfying GOST (State Standard) R 52368-2005 (EN 590:2004) and a methane-propane mixture imitating the composition of associated petroleum gas, has been investigated to clarify this issue. These hydrocarbon feedstocks were chosen for the reason that they are universally used as a fuel for various types of power generation units. Experiments have been carried out in a catalytic flow reactor at 250–480°C (for the methane-propane mixture) and 500–600°C (for diesel fuel) and pressures of 1–15 atm using a nickel-containing catalyst (NIAP-18). This catalyst has been demonstrated to ensure conversion of different types of hydrocarbon feedstocks into synthesis gas and methane-hydrogen mixtures usable as a fuel for power generation units based on high-temperature fuel cells and for spark-ignition, diesel, and gas-diesel engines.

Keywords

steam conversion of hydrocarbons fuel processor catalytic reformer nickel-containing catalysts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Peighambardoust, S.J., Rowshanzamir, S., and Amjadi, M., Int. J. Hydrogen Energy, 2010, vol. 35, p. 9349.CrossRefGoogle Scholar
  2. 2.
    Snytnikov, P.V., Badmaev, S.D., Volkova, G.G., Potemkin, D.I., Zyryanova, M.M., Belyaev, V.D., and Sobyanin, V.A., Int. J. Hydrogen Energy, 2012, vol. 37, p. 16388.CrossRefGoogle Scholar
  3. 3.
    Rozhdestvennskii, V.P. and Erofeeva, V.I., in Kataliticheskaya konversiya uglevodorodov (Catalytic Reforming of Hydrocarbons), Kiev: Naukova Dumka, 1975, no. 2, p. 97.Google Scholar
  4. 4.
    Plotnitskii, R.A., Dyachkov, A.I., Fefer, A.G., and Meshenko, N.T., Khim. Tekhnol., 1984, no. 5, p. 3.Google Scholar
  5. 5.
    Meshenko, N.T., Veselov, V.V., Shub, F.S., and Temkin, M.I., Kinet. Katal., 1977, vol. 18, no. 4, p. 962.Google Scholar
  6. 6.
    Meshenko, N.T. and Veselov, V.V., Khim. Tekhnol., 1977, no. 5, p. 41.Google Scholar
  7. 7.
    Gel’perin, N.I. and Medvedev, E.G., Khim. Prom-st., 1976, no. 11, p. 18.Google Scholar
  8. 8.
    Meshenko, N.T. and Veselov, V.V., Khim. Tekhnol., 1972, no. 2, p. 47.Google Scholar
  9. 9.
    Christensen, T.S., Appl. Catal., A, 1996, vol. 138, p. 285.CrossRefGoogle Scholar
  10. 10.
    Rostrup-Nielsen, J.R., J. Catal., 1973, vol. 31, p. 173.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • M. M. Zyryanova
    • 1
    • 2
    • 3
  • S. D. Badmaev
    • 1
    • 2
    • 3
  • V. D. Belyaev
    • 1
    • 2
    • 3
  • Yu. I. Amosov
    • 1
    • 2
    • 3
  • P. V. Snytnikov
    • 1
    • 2
    • 3
  • V. A. Kirillov
    • 1
    • 2
    • 3
  • V. A. Sobyanin
    • 1
    • 2
    • 3
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.UNICAT Ltd.NovosibirskRussia

Personalised recommendations