Advertisement

Catalysis in Industry

, Volume 5, Issue 4, pp 350–357 | Cite as

Porous carbon-silica composites and carbon materials from rice husk: Production technology, texture, and dispersity

  • Yu. V. LarichevEmail author
  • P. M. Eletskii
  • F. V. Tuzikov
  • V. A. Yakovlev
Biocatalysis

Abstract

A method based on carbonization in a fluidized-bed catalytic reactor is suggested for utilization of rice husks, which are hard-to-recycle waste from paddy production. The bottom ash resulting from carbonization at 465–600°C is a carbon-silica nanocomposite (C/SiO2) with a SiO2 content of 58.7–81.8 wt % and a specific surface area of S BET = 152–232 m2/g. Leaching of SiO2 with hydrofluoric acid yields porous carbon materials with a specific surface area of 165–494 m2/g and a SiO2 content of <1%. These materials have been characterized by small-angle X-ray scattering (SAXS), transmission electron microscopy, and X-ray diffraction. Particle size data for SiO2 in the carbon-silica nanocomposite have been obtained for the first time. As the carbonization temperature is raised from 465 to 600°C, the average particle size of silica increases from 5.5 to 8.1 nm. Development of the SAXS procedure for determining the size of silica particles in the carbon matrix would provide a promising tool for knowingly designing porous carbon materials with preset properties. The carbonization of rice husks in a fluidized catalyst bed is among the most promising methods of their conversion into C/SiO2 nanocomposites and porous carbon materials with the use of template synthesis approaches.

Keywords

SAXS rice husks fluidized bed carbon materials carbon-mineral composites 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Liu, Y., Guo, Yu., Gao, W., Wang, Zh., Ma, Yu., and Wang, Z., J. Cleaner Prod., 2012, vol. 32, p. 204.CrossRefGoogle Scholar
  2. 2.
    Li, Y., Ding, X., Guo, Yu., Rong, Ch., Wang, L., Qu, Yu., Ma, X., and Wang, Z., J. Hazard. Mater., 2011, vol. 186, p. 2151.CrossRefGoogle Scholar
  3. 3.
    Isahak, W.N.R.W., Hisham, M.W.M., Yarmo, M.A., and Hin, T.Y., Renewable Sustainable Energy Rev., 2012, vol. 16, p. 5910.CrossRefGoogle Scholar
  4. 4.
    Xiujuan, G., Shurong, W., Qi, W., Zuogang, G., and Zhongyang, L., Chin. J. Chem. Eng., 2011, vol. 19, no. 1, p. 116.CrossRefGoogle Scholar
  5. 5.
    Dagnino, E.P., Chamorro, E.R., Romano, S.D., Felissia, F.E., and Area, M.C., Ind. Crops Prod., 2013, vol. 42, p. 363.CrossRefGoogle Scholar
  6. 6.
    Rosa, S.M.L., Rehman, N., de Miranda, M.I.G., Nachtigall, S.M.B., and Bica, C.I.D., Carbohydr. Polym., 2012, vol. 87, p. 1131.CrossRefGoogle Scholar
  7. 7.
    Zhang, H., Zhao, X., Ding, X., Lei, H., Chen, X., An, D., Li, Y., and Wang, Z., Bioresour. Technol., 2010, vol. 101, p. 1263.CrossRefGoogle Scholar
  8. 8.
    Suxia, R., Haiyan, X., Jinling, Z., Shunqing, L., Xiaofeng, H., and Tingzhou, L., Carbohydr. Res., 2012, vol. 359, p. 1.CrossRefGoogle Scholar
  9. 9.
    Bansal, N., Tewari, R., Soni, R., and Soni, S.K., Waste Manage., 2012, vol. 32, p. 1341.CrossRefGoogle Scholar
  10. 10.
    Adam, F., Appaturi, J.N., and Iqbal, A., Catal. Today, 2012, vol. 190, p. 2.CrossRefGoogle Scholar
  11. 11.
    Ma, X., Zhou, B., Gao, W., Qu, Y., Wang, L., Wang, Z., and Zhu, Y., Powder Technol., 2012, vol. 217, p. 497.CrossRefGoogle Scholar
  12. 12.
    Chandrasekhar, S., Pramada, P.N., Raghavan, P., Satyanarayana, K.G., and Gupta, T.N., J. Mater. Sci. Lett., 2002, vol. 21, p. 1245.CrossRefGoogle Scholar
  13. 13.
    Martinez, V., Valencia, M.F., Cruz, J., Mejia, J.M., and Chejne, F., Ceram. Int., 2006, vol. 32, p. 891.CrossRefGoogle Scholar
  14. 14.
    Wua, H., Gao, M., Zhu, D., Zhang, S., Pan, Y., Pan, H., Liu, Y., Oliveira, F.J., and Vieira, J.M., Ceram. Int., 2012, vol. 38, p. 3519.CrossRefGoogle Scholar
  15. 15.
    Zawrah, M.F. and Zayed, M.A., and Ali, M.R.K, J. Hazard. Mater., 2012, vols. 227–228, p. 250.CrossRefGoogle Scholar
  16. 16.
    Chiew, Y.L. and Cheong, K.Y., Mater. Sci. Eng., B, 2011, vol. 176, p. 951.CrossRefGoogle Scholar
  17. 17.
    Padhi, B.K. and Patnaik, C., Ceram. Int., 1995, vol. 21, p. 213.CrossRefGoogle Scholar
  18. 18.
    Umeda, J., Kondoh, K., Kawakami, M., and Imai, H., Powder Technol., 2009, vol. 189, p. 399.CrossRefGoogle Scholar
  19. 19.
    Panpa, W. and Jinawath, S., Appl. Catal., B, 2009, vol. 90, p. 389.CrossRefGoogle Scholar
  20. 20.
    Prasetyoko, D., Ramli, Z., Endud, S., Hamdan, H., and Sulikowski, B., Waste Manage., 2006, vol. 26, p. 1173.CrossRefGoogle Scholar
  21. 21.
    Guo, Y. and Rockstraw, D.A., Microporous Mesoporous Mater., 2007, vol. 100, p. 12.CrossRefGoogle Scholar
  22. 22.
    Eletskii, P.M., Yakovlev, V.A., Kaichev, V.V., Yazykov, N.A., and Parmon, V.N., Kinet. Catal., 2008, vol. 49, p. 305.CrossRefGoogle Scholar
  23. 23.
    Guo, Y., Yang, S., Yu, K., Zhao, J., Wang, Z., and Xu, H., Mater. Chem. Phys., 2002, vol. 74, p. 320.CrossRefGoogle Scholar
  24. 24.
    Guo, Y., Yang, S., Fu, W., Qi, J., Li, R., Wang, Z., and Xu, H., Dyes Pigm., 2003, vol. 56, p. 219.CrossRefGoogle Scholar
  25. 25.
    Eletskii, P.M., Yakovlev, V.A., Fenelonov, V.B., and Parmon, V.N., Kinet. Catal., 2008, vol. 49, p. 708.CrossRefGoogle Scholar
  26. 26.
    Yeletsky, P.M., Yakovlev, V.A., Mel’gunov, M.S., and Parmon, V.N., Microporous Mesoporous Mater., 2009, vol. 121, p. 34.CrossRefGoogle Scholar
  27. 27.
    Nikonov, G.K., Burkovskaya, L.F., Artamonova, N.A., and Chelokhsaeva, G.L., Gidrol. Lesokhim. Prom-st., 1990, vol. 7, p. 18.Google Scholar
  28. 28.
    Ustinov, E.A., Fenelonov, V.B., Yakovlev, V.A., and Eletskii, P.M., Kinet. Catal., 2007, vol. 48, p. 589.CrossRefGoogle Scholar
  29. 29.
    Chang, Ch.-F., Chang, Ch.-Y., and Tsai, W.-T., J. Colloid Interface Sci., 2000, vol. 232, p. 45.CrossRefGoogle Scholar
  30. 30.
    Yoshizawa, N., Maruyama, K., Yamada, Y., and Zielinska-Blajet, M., Fuel, 2000, vol. 79, p. 1461.CrossRefGoogle Scholar
  31. 31.
    Petrov, V.S., Simkin, Yu.Ya., and Krylova, O.K., Khim. Interes. Ust. Razv., 1996, vol. 4, p. 389.Google Scholar
  32. 32.
    Plaksin, G.V., Baklanova, O.N., Drozdov, V.A., Duplyakin, V.K., Kuznetsov, B.N., Rudkovskii, A.V., and Shchipko, M.L., Khim. Interes. Ust. Razv., 2000, no. 8, p. 715.Google Scholar
  33. 33.
    Ahmad, M.A., Wan, DaudW.M.A., and Aroua, M.K., Colloids Surf., A, 2008, vol. 312, p. 131.CrossRefGoogle Scholar
  34. 34.
    Ip, A.W.M., Barford, J.P., and McKay, G., Bioresour. Technol., 2008, vol. 99, p. 8909.CrossRefGoogle Scholar
  35. 35.
    Zhang, F., Ma, H., Chen, J., Li, G.-D., Zhang, Y., and Chen, J.-S., Bioresour. Technol., 2008, vol. 99, p. 4803.CrossRefGoogle Scholar
  36. 36.
    Sevilla, M., Alvarez, S., Centeno, T.A., Fuertes, A.B., and Stoeckli, F., Electrochim. Acta, 2007, vol. 52, p. 3207.CrossRefGoogle Scholar
  37. 37.
    US Patent 7220697, 2007.Google Scholar
  38. 38.
    Kolesnikov, M.P., Usp. Biol. Khim., 2001, vol. 41, p. 301.Google Scholar
  39. 39.
    Zakharov, A.M., Belyakov, A.V., and Tsvigunov, A.N., Steklo Keram., 1993, no. 9–10, p. 37.Google Scholar
  40. 40.
    Vassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G., and Morgan, T.J., Fuel, 2012, vol. 94, p. 1.CrossRefGoogle Scholar
  41. 41.
    Larichev, Y.V., Prosvirin, I.P., Shlyapin, D.A., Shitova, N.B., Tsyrul’nikov, P.G., and Bukhtiyarov, V.I., Kinet. Catal., 2005, vol. 46, p. 597.CrossRefGoogle Scholar
  42. 42.
    Larichev, Y.V., Shlyapin, D.A., Tsyrul’nikov, P.G., and Bukhtiyarov, V.I., J. Catal. Lett., 2008, vol. 120, p. 204.CrossRefGoogle Scholar
  43. 43.
    Koz’mina, E.P., Ris i ego kachestvo (Rice and Its Quality), Moscow: Kolos, 1976.Google Scholar
  44. 44.
    Svergun, D.I., J. Appl. Crystallogr., 1992, vol. 25, p. 495.CrossRefGoogle Scholar
  45. 45.
    Konarev, P.V., Petoukhov, M.V., Volkov, V.V., and Svergun, D.I., J. Appl. Crystallogr., 2006, vol. 39, p. 277.CrossRefGoogle Scholar
  46. 46.
    Fenelonov, V.B., Poristyi uglerod (Porous Carbon), Novosibirsk: Inst. Kataliza, 1995.Google Scholar
  47. 47.
    Svergun, D.I. and Feigin, L.A., Rentgenovskoe i neitronnoe malouglovoe rasseyanie (Small-Angle X-Ray and Neutron Scattering), Moscow: Nauka, 1986.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • Yu. V. Larichev
    • 1
    Email author
  • P. M. Eletskii
    • 1
  • F. V. Tuzikov
    • 1
  • V. A. Yakovlev
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations