Advertisement

Catalysis in Industry

, Volume 5, Issue 1, pp 1–8 | Cite as

Iminodiacetic acid synthesis in a microchannel reactor

  • D. V. Andreev
  • A. G. Gribovskii
  • L. L. Makarshin
  • N. Yu. Adonin
  • S. A. Prikhod’ko
  • Z. P. Pai
  • V. N. Parmon
Catalysis in Chemical and Petrochemical Industry

Abstract

The synthesis of iminodiacetic acid (IDA) by diethanolamine (DA) dehydrogenation over a Cu/ZrO2 catalyst in a microchannel rector has been investigated and has been compared to the same synthesis in an autoclave. The output capacity of the microchannel reactor per unit volume of the reaction zone and per unit weight of the catalyst is 4.38 (g IDA)/(cm3 h) and 0.49 (g IDA)/(g Cat h), respectively, while the corresponding output capacities of the autoclave are 0.018 (g IDA)/(cm3 h) and 0.46 (g IDA)/(g Cat h). A kinetic analysis has demonstrated that IDA synthesis proceeds in two steps, yielding N-(2-hydroxyethyl)glycine as an intermediate product. A formal two-step kinetic scheme has been proposed, and the apparent rate constants of the reaction steps have been calculated. These rate constants for the synthesis in the microchannel reactor are several orders of magnitude higher than the corresponding constants for the synthesis in the autoclave. The output capacity per unit volume of the reaction zone for the microchannel reactor is two orders of magnitude higher than for the autoclave. This is evidence that the process in the submillimeter-sized channels is markedly intensified owing to the high heat and mass transfer efficiency.

Keywords

iminodiacetic acid dehydrogenation diethanolamine catalyst microchannel reactor autoclave 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Liu, D., Cant, N.W., Smith, A.J., and Wainwright, M.S., Appl. Catal., A, 2006, vol. 297, p. 18.CrossRefGoogle Scholar
  2. 2.
    Franz, J.E., Mao, M.K., and Sikorski, J.A., Glyphosate: A Unique Global Pesticide, Washington, DC: Am. Chem. Soc., 1997.Google Scholar
  3. 3.
    Chitwood, H.C., US Patent 2384817, 1945.Google Scholar
  4. 4.
    Goto, T. and Yokoyama, H., US Patent 4782183, 1988.Google Scholar
  5. 5.
    Franczyk, T., US Patent 5292936, 1994.Google Scholar
  6. 6.
    Morgenstern, D. and Arhancet, J.P., US Patent 6 376 708, 2002.Google Scholar
  7. 7.
    Urano, Y. and Kadono, Y., US Patent 5220054, 1993.Google Scholar
  8. 8.
    Ehrfeld, W., Hessel, V., and Löwe, H., Microreactors-New Technology for Modern Chemistry, Weinheim: Willey-VCH, 2000.CrossRefGoogle Scholar
  9. 9.
    Makarshin, L.L., Andreev, D.V., Gribovskii, A.G., Dutov, P.M., Khantakov, R.M., and Parmon, V.N., Kinet. Catal., 2007, vol. 48, no. 5, p. 765.CrossRefGoogle Scholar
  10. 10.
    Makarshin, L.L., Gribovskii, A.G., Andreev, D.V., and Parmon, V.N., RF Patent 2323047, 2008.Google Scholar
  11. 11.
    Einarsson, S., Joseffsson, B., and Lagerkvist, S., J. Chromatogr., 1983, vol. 282, p. 609.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • D. V. Andreev
    • 1
  • A. G. Gribovskii
    • 1
    • 2
  • L. L. Makarshin
    • 1
  • N. Yu. Adonin
    • 1
  • S. A. Prikhod’ko
    • 1
  • Z. P. Pai
    • 1
  • V. N. Parmon
    • 1
    • 2
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations