Advertisement

Catalysis in Industry

, Volume 4, Issue 1, pp 59–66 | Cite as

Using catalysts based on molybdenum and tungsten carbides in the water-gas shift reaction

  • G. L. Semin
  • A. R. Dubrovskii
  • P. V. Snytnikov
  • S. A. Kuznetsov
  • V. A. Sobyanin
General Problems of Catalysis

Keywords

Carbide Tungsten Carbide Steam Reform Molybdenum Carbide Carbide Catalyst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Simagina, V.I., Milova, L.P., and Parmon, V.N., Metals in Commercial Catalysts: 1. Molybdenum and Tungsten, Catal. Ind., 2009, no. 4, p. 6.Google Scholar
  2. 2.
    Széchenyi, A. and Solymosi, F., n-Octane Aromatization on Mo2C-Containing Catalysts, Appl. Catal., A, 2006, vol. 306, no. 1, p. 149.Google Scholar
  3. 3.
    Maméde, A.S., Giraudon, J.-M., Löfberg, A., Leclercq, L., and Leclercq, G., Hydrogenation of Toluene over β-Mo2C in the Presence of Thiophene, Appl. Catal., A, 2002, vol. 227, nos. 1–2, p. 73.Google Scholar
  4. 4.
    Solymosi, F. and Szoke, A., Conversion of Ethane into Benzene on Mo2C/ZSM-5 Catalyst, Appl. Catal., A, 1998, vol. 166, no. 1, p. 225.CrossRefGoogle Scholar
  5. 5.
    Xiang, M., Zou, J., Li, D., Li, W., Sun, Y., and She, X., Nickel and Potassium Co-Modified β-Mo2C Catalyst for CO Conversion, J. Nat. Gas Chem., 2009, vol. 18, no. 2, p. 183.CrossRefGoogle Scholar
  6. 6.
    Solymosi, F., Németh, R., and Oszkó, A., The Oxidative Dehydrogenation of Propane with CO2 Over Supported Mo2C Catalyst, Stud. Surf. Sci. Catal., 2001, vol. 136, p. 339.CrossRefGoogle Scholar
  7. 7.
    Ardakani, S.J., Liu, X., and Smith, K.J., Hydrogenation and Ring Opening of Naphthalene on Bulk and Supported Mo2C Catalysts, Appl. Catal., A, 2007, vol. 324, no. 1, p. 9.Google Scholar
  8. 8.
    Lin, S.S.-Y., Thomson, W.J., Hagensen, T.J., and Ha, S.Y., Steam Reforming of Methanol Using Supported Mo2C Catalysts, Appl. Catal., A, 2007, vol. 318, p. 121.CrossRefGoogle Scholar
  9. 9.
    Marin Flores, O.G. and Ha, S., Study of the Performance of Mo2C for iso-Octane Steam Reforming, Catal. Today, 2008, vol. 136, nos. 3–4, p. 235.CrossRefGoogle Scholar
  10. 10.
    Wang, J., Ji, Sh., Yang, J., Zhu, Q., and Li, S., Mo2C and Mo2C/Al2O3 Catalysts for NO Direct Decomposition, Catal. Commun., 2005, vol. 6, no. 6, p. 389.CrossRefGoogle Scholar
  11. 11.
    Oxley, J.D., Mdleleni, M.M., and Suslick, K.S., Hydrodehalogenation with Sonochemically Prepared Mo2C and W2C, Catal. Today, 2004, vol. 88, nos. 3–4, p. 139.CrossRefGoogle Scholar
  12. 12.
    Patt, J., Moon, D.J., Phillips, C., and Thompson, L., Molybdenum Carbide Catalyst for Water-Gas Shift, Catal. Lett., 2000, vol. 65, p. 193.CrossRefGoogle Scholar
  13. 13.
    Moon, D.J. and Rue, J.W., Molybdenum Carbide Water-Gas Shift Catalyst for Fuel Cell-Powered Vehicles Application, Catal. Lett., 2004, vol. 92, no. 1, p. 17.CrossRefGoogle Scholar
  14. 14.
    Oyama, S.T., Preparation and Catalytic Properties of Transition Metal Carbides and Nitrides, Catal. Today, 1992, vol. 15, no. 2, p. 179.CrossRefGoogle Scholar
  15. 15.
    York, A.P.E., Clarige, J.B., Marquez-Alvarez, C., Brungs, A.J., Tsang, S.C., and Green, M.L.H., Synthesis of Early Transition Metal Carbides and Their Application for the Reforming of Methane to Synthesis Gas, Stud. Surf. Sci. Catal., 1997, vol. 110, p. 711.CrossRefGoogle Scholar
  16. 16.
    Clarige, J.B., York, A.P.E., Brungs, A.J., Marquez-Alvares, C., Sloan, J., Tsang, S.C., and Green, M.L.H., New Catalysts for Conversion of Methane to Synthesis Gas: Molybdenum and Tungsten Carbide, J. Catal., 1998, vol. 180, no. 1, p. 85.CrossRefGoogle Scholar
  17. 17.
    Faul, W. and Kastening, B., US Patent 4159309, 1979.Google Scholar
  18. 18.
    Vreugdenhil, W., Sherif, F.G., Burk, J.H., and Gadberry, J.F., US Patent 5311161, 1993.Google Scholar
  19. 19.
    Jacquot, R. and Mercier, C., US Patent 5646085, 1997.Google Scholar
  20. 20.
    Becnel, B.F., Sabahi, M., and Theriot, K.J., US Patent 5907069, 1999.Google Scholar
  21. 21.
    Sabahi, M., Teriot, K.J., and Becnel, B., WO Patent 9830528, 1998.Google Scholar
  22. 22.
    Sherif, F.G., US Patent 5426252, 1995.Google Scholar
  23. 23.
    Pavlov, D., Donchev, T.V., Nikolov, I.P., Nikolova, V.I., Papazov, G.P., and Petrov, K.M., US Patent 4925746, 1990.Google Scholar
  24. 24.
    Baresel, D., Gellert, W., and Scharner, P., US Patent 3902917, 1975.Google Scholar
  25. 25.
    Finch, J.N., US Patent 4219445, 1980.Google Scholar
  26. 26.
    Finch, J.N., US Patent 4155928, 1979.Google Scholar
  27. 27.
    Slaugh, L.H. and Hoxmeier, R.J., US Patent 4326992, 1982.Google Scholar
  28. 28.
    Sherif, F.G. and Vreugdenhil, W., US Patent 5330944, 1994.Google Scholar
  29. 29.
    Sherif, F.G., US Patent 0 569 084, 1993.Google Scholar
  30. 30.
    Wu, A. and Drake, C.A., US Patent 5776852, 1998.Google Scholar
  31. 31.
    Sherif, F.G., US Patent 5384027, 1995.Google Scholar
  32. 32.
    Tonkovich, A., Vang I., and Vanderveil, D.P., RF Patent 2003126180, 2005.Google Scholar
  33. 33.
    Drake, C.A. and Wu, A., US Patent 5965782, 1999.Google Scholar
  34. 34.
    Gaffney, A.M., WO Patent 2001/0 128 679, 2001.Google Scholar
  35. 35.
    Gaffney, A.M., WO Patent 2002/2 002 198 101, 2002.Google Scholar
  36. 36.
    Seegopaul, P. and Gao, L., WO Patent 2002/02 076 885, 2004.Google Scholar
  37. 37.
    Thompson, L., Patt, J., Moon, D.J., and Phillips, C., US Patent 6 623 720, 2003.Google Scholar
  38. 38.
    Slaugh, L.H. and Hoxmeier, R.J., US Patent 4325842, 1982.Google Scholar
  39. 39.
    Lee, J.S., Oyama, S.T., and Boudart, M., Molybdenum Carbide Catalysts: I. Synthesis of Unsupported Powders, J. Catal., 1987, vol. 106, p. 125.CrossRefGoogle Scholar
  40. 40.
    Li, S., Lee, J.S., Hyeon, T., and Suslick, K.S., Catalytic Hydrodenitrogenation of Indole over Molybdenum Nitride and Carbides with Different Structures, Appl. Catal., A, 1999, vol. 184, p. 1.CrossRefGoogle Scholar
  41. 41.
    Kojima, R. and Aika, K., Molybdenum Nitride and Carbide Catalysts for Ammonia Synthesis, Appl. Catal., A, 2001, vol. 219, p. 141.CrossRefGoogle Scholar
  42. 42.
    Moon, D.J. and Woo, R.J., Molybdenum Carbide Water-Gas Shift Catalyst for Fuel Cell-Powered Vehicles Applications, Catal. Lett., 2004, vol. 92, p. 1.CrossRefGoogle Scholar
  43. 43.
    Moon, D.J., Screekumar, K., Lee, S.D., Lee, B.G., and Kim, H.S., Studies on Gasoline Fuel Processor System for Fuel-Cell Powered Vehicles Application, Appl. Catal., A, 2001, vol. 215, p. 1.CrossRefGoogle Scholar
  44. 44.
    Patt, J., Moon, D.J., Phillips, C., and Thomson, L., Molybdenum Carbide Catalysts for Water-Gas Shift, Catal. Lett., 2000, vol. 65, p. 193.CrossRefGoogle Scholar
  45. 45.
    Oyama, S.T., Charles, Y.C., and Ramanathan, S., Transition Metal Bimetallic Oxycarbides: Synthesis, Characterization, and Activity Studies, J. Catal., 1999, vol. 184, p. 535.CrossRefGoogle Scholar
  46. 46.
    Volpe, L. and Boudart, M., Compounds of Molybdenum and Tungsten with High Specific Surface Area, J. Solid State Chem., 1985, vol. 59, p. 348.CrossRefGoogle Scholar
  47. 47.
    Manoli, J.-M., Da Costa, P., Brun, M., Vrinat, M., Maugé, F., and Potvin, C., Hydrodesulfurization of 4,6-Dimethyldibenzothiophene over Promoted (Ni, P) Alumina-Supported Molybdenum Carbide Catalysts: Activity and Characterization of Active Sites, J. Catal., 2004, vol. 221, p. 365.CrossRefGoogle Scholar
  48. 48.
    Wang, X.H., Hao, H.L., Zhang, M.H., Li, W., and Tao, K.Y., Synthesis and Characterization of Molybdenum Carbides Using Propane as Carbon Source, J. Solid State Chem., 2006, vol. 179, p. 538.CrossRefGoogle Scholar
  49. 49.
    Slaugh, L.H. and Hoxmeier, R.J., US Patent 4325843, 1982.Google Scholar
  50. 50.
    Boudart, M. and Oyama, S., US Patent 4 851 206, 1989.Google Scholar
  51. 51.
    Hyeon, T., Fang, M., and Suslick, K.S., Nanostructured Molybdenum Carbide: Sonochemical Synthesis and Catalytic Properties, J. Am. Chem. Soc., 1996, vol. 118, p. 5492.CrossRefGoogle Scholar
  52. 52.
    Roman, P., Luque, A., and Aranzabe, A., Synthesis of Oxides, Oxocarbides and Carbides of Molybdenum by Thermal Decomposition of Diethylenetriamine Oxomolybdenum Compounds, Thermochim. Acta, 1993, vol. 223, p. 167.CrossRefGoogle Scholar
  53. 53.
    Gu, Y., Li, Z., Chen, L., Ying, Y., and Qian, Y., Synthesis of Nanocrystalline Mo2C via Sodium Co-Reduction of MoCl5 and CBr4 in Benzene, Mater. Res. Bull., 2003, vol. 38, p. 1119.CrossRefGoogle Scholar
  54. 54.
    Lu, J., Hugosson, H., Eriksson, O., Nordstrom, L., and Jansson, U., Chemical Vapour Deposition of Molybdenum Carbides: Aspects of Phase Stability, Thin Solid Films, 2000, vol. 370, p. 203.CrossRefGoogle Scholar
  55. 55.
    Monteverdi, S., Mercy, M., Molina, S., Bettahar, M.M., Puricelli, S., Be’gin, D., Maréché, F., and Furdin, F., Study of Unsupported and Active Carbon Supported β-Mo2C Prepared from MoCl5 Precursor, Appl. Catal., A, 2002, vol. 230, p. 99.CrossRefGoogle Scholar
  56. 56.
    Weigert, E.C., South, J., Rykov, S.A., and Chen, J.G., Multifunctional Composites Containing Molybdenum Carbides as Potential Electrocatalysts, Catal. Today, 2005, vol. 99, p. 285.CrossRefGoogle Scholar
  57. 57.
    Shapoval, V.I., Malyshev, V.V., Novoselova, I.N., and Kushkhov, Kh.B., Current Problems of the Electrochemical Synthesis of Group IV-VI Transition Metal Compounds, Usp. Khim., 1995, vol. 64, no. 2, p. 133.Google Scholar
  58. 58.
    Gurin, V.N., Synthesis Methods for Refractory Compounds of Transition Metals and Their Development Prospects, Usp. Khim., 1972, vol. 41, p. 616.Google Scholar
  59. 59.
    Hoschowa, K., J. Jpn. Soc. Heat Treat., 1980, vol. 20, p. 130.Google Scholar
  60. 60.
    Arai, T., Sugimoto, Y., and Komatsu, N., Carbide Coating and Boriding of Chromium-Plated Steel by Immersion Process in Fused Borax Bath, J. Met. Finish. Soc. Jpn., 1981, vol. 32, p. 240.CrossRefGoogle Scholar
  61. 61.
    Andrieux, J.L. and Weiss, G., Making Compounds of Molybdenum and of Tungsten by Electrolysis of Melts, Bull. Soc. Chim. Fr., 1948, vol. 15, p. 598.Google Scholar
  62. 62.
    Gomes, J. M., Baker, D.H., and Uchida, K., US Patent 3 589 987, 1971.Google Scholar
  63. 63.
    Suri, A.K., Musherjee, T.K., and Cupta, C.K., Molybdenum Carbide by Electrolysis of Sodium Molybdate, J. Electrochem. Soc., 1973, vol. 120, no. 5, p. 622.CrossRefGoogle Scholar
  64. 64.
    Barlett, H.E. and Johnson, K.E., Electrochemical Studies in Molten Li2CO3-Na2CO3, J. Electrochem. Soc., 1967, vol. 114, no. 5, p. 457.CrossRefGoogle Scholar
  65. 65.
    Delimarskii, Yu.K., Grishchenko, V.F., and Gorodyskii, A.V., A Study of the Reactions Occurring during the Electrolysis of Molten Carbonates, Ukr. Khim. Zh., 1965, vol. 31, no. 1, p. 32.Google Scholar
  66. 66.
    Rebrov, E.V., Kuznetsov, S.A., de Croon, M.H.J.M., and Schouten, J.C., Study of the Water-Gas Shift Reaction on Mo2C/Mo Catalytic Coatings for Application in Microstructured Fuel Processors, Catal. Today, 2007, vol. 125, nos. 1–2, p. 88.CrossRefGoogle Scholar
  67. 67.
    Kuznetsov, S.A., Dubrovskiy, A.R., Rebrov, E.V., and Schouten, J.C., Electrochemical Synthesis of Mo2C Catalytical Coatings for the Water-Gas Shift Reaction, Z. Naturforsch., A: Phys. Sci., 2007, vol. 62, nos. 10–11, p. 647.Google Scholar
  68. 68.
    Dubrovskii, A.R., Kuznetsov, S.A., Rebrov, E.V., and Schouten, J.C., Catalytic Mo2C Coatings for the Water Gas Shift Reaction: Electrosynthesis in Molten Salts, Kinet. Catal., 2008, vol. 49, no. 4, p. 594.CrossRefGoogle Scholar
  69. 69.
    Dubrovskii, A.R., Kuznetsov, S.A., Rebrov, E.V., Schouten, J.C., and Kalinnikov, V.T., Synthesis of Mo2C Coatings by Simultaneous Electroreduction of and Ions in Molten Salts and Their Catalytic Activity for the Water-Gas Shift Reaction, Dokl. Chem., 2008, vol. 421,part 2, p. 186.CrossRefGoogle Scholar
  70. 70.
    Dubrovskiy, A.R., Rebrov, E.V., Kuznetsov, S.A., and Schouten, J.C., A Microstructured Reactor/Heat-Exchanger for the Water-Gas Shift Reaction Operated in the 533–673 K Range, Catal. Today, 2009, vol. 147,suppl. 1, p. 198.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • G. L. Semin
    • 1
    • 2
  • A. R. Dubrovskii
    • 3
  • P. V. Snytnikov
    • 1
    • 2
    • 4
  • S. A. Kuznetsov
    • 3
  • V. A. Sobyanin
    • 1
    • 2
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw MaterialsRussian Academy of SciencesApatityRussia
  4. 4.UNICAT Ltd.NovosibirskRussia

Personalised recommendations