Mathematical Models and Computer Simulations

, Volume 9, Issue 5, pp 580–586 | Cite as

A model of information warfare in a society under a periodic destabilizing effect

  • A. P. Mikhailov
  • A. P. Petrov
  • O. G. Proncheva
  • N. A. Marevtseva
Article

Abstract

A model of information warfare in a society when one of the parties periodically destabilizes the system by a short-term jump-wise increase in the intensity of the propaganda in the media is analyzed. The model has the form of two nonlinear ordinary differential equations with a periodic discontinuous right-hand side. The asymptotical solution to the periodic solutions are constructed for the case of low-intensity dissemination of information through interpersonal communication. The transient regime is investigated numerically.

Keywords

mathematical modeling information warfare media propaganda interpersonal communication differential equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Samarskii and A. P. Mikhailov, Principles of Mathematical Modelling: Ideas, Methods, Examples (Fizmatlit, Moscow, 2006; CRC, Boca Raton, FL, 2010).MATHGoogle Scholar
  2. 2.
    A. P. Mikhailov and N. V. Kliusov, “On properties of simplest mathematical models of informational threat propagation,” in Proceedings of the Seminar on Mathematical Modelling of Social Processes (Maks Press, Moscow, 2002), No. 4, pp. 115–123.Google Scholar
  3. 3.
    A. P. Mikhailov and K. V. Izmodenova, “On optimal control of information spreading process,” Mat. Model. 17 (5), 67–76 (2005).MathSciNetMATHGoogle Scholar
  4. 4.
    A. P. Mikhailov and K. V. Izmodenova, “On optimal control in mathematical model of information propagation,” in Proceedings of the Seminar on Mathematical Modelling of Social Processes (Maks Press, Moscow, 2004), No. 6.Google Scholar
  5. 5.
    A. P. Mikhailov, A. P. Petrov, N. A. Marevtseva, and I. V. Tretyakova, “Development of a model of information dissemination in society,” Math. Models Comput. Simul. 6, 535–541 (2014).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    N. A. Marevtseva, “Simplest mathematical models of information confrontation,” in Mathematical Modelling and Informational Technologies, Proceedings of the All-Russia Scientific Young Scientists Schools (Yuzh. Fed. Univ., Rostov-na-Donu, 2009), Vol. 8, pp. 354–363.Google Scholar
  7. 7.
    A. P. Mikhailov and N. A. Marevtseva, “Models of information warfare,” Math. Models Comput. Simul. 4, 251–259 (2011). doi 10.1134/S2070048212030076CrossRefMATHGoogle Scholar
  8. 8.
    A. P. Mikhailov, A. P. Petrov, O. G. Proncheva, and N. A. Marevtseva, “Mathematical modeling of information warfare in a society,” Mediterranean J. Soc. Sci. 6 (5, S2), 27–35 (2015).MATHGoogle Scholar
  9. 9.
    A. P. Mikhailov, A. P. Petrov, O. G. Proncheva, and N. A. Marevtseva, “Mathematical modelling of informational confrontation in society,” in Proceedings of the International Economical Symposium 2015, Dedicated to 75 Years of Economic Department of SPb. State Univ. (Skifiia-print, St. Petersburg, 2015), pp. 293–303. http://econconf. spbu.ru/files/Symposium_Sbornik_ Statey.pdf.Google Scholar
  10. 10.
    D. J. Daley and D. G. Kendall, “Stochastic rumors,” J. Inst. Math. Appl. 1, 42–55 (1964).CrossRefGoogle Scholar
  11. 11.
    D. P. Maki and M. Thompson, Mathematical Models and Applications (Prentice-Hall, Englewood Cliffs, 1973).Google Scholar
  12. 12.
    Guanghua Chen,_H. Shen, T. Ye, G. Chen, and N. Kerr, “A kinetic model for the spread of rumor in emergencies,” Discrete Dyn. Nat. Soc. 2013, 605854 (2013). doi 10.1155/2013/605854MathSciNetGoogle Scholar
  13. 13.
    V. A. Shvedovskii, “Simulation of information propagation in adjacent social groups,” in Mathematical Method in Sociological Study (Nauka, Moscow, 1981), pp. 207–214 [in Russian].Google Scholar
  14. 14.
    A. P. Petrov, A. I. Maslov, and N. A. Tsaplin, “Modeling position selection by individuals during information warfare in society,” Math. Models Comput. Simul. 8, 401–408 (2016).CrossRefGoogle Scholar
  15. 15.
    N. Rashevsky, “Outline of a physico-mathematical theory of excitation and inhibition,” Protoplasma 20, 42 (1933).CrossRefGoogle Scholar
  16. 16.
    N. Rashevsky, Mathematical Biophysics: Physico-Mathematical Foundations of Biology (Univ. Chicago Press, Chicago, 1938).MATHGoogle Scholar
  17. 17.
    M. Nekovee, Y. Moreno, G. Bianconi, and M. Marsili, “Theory of rumour spreading in complex social networks,” Physica A 374, 457–470 (2007).CrossRefGoogle Scholar
  18. 18.
    D. A. Gubanov, D. A. Novikov, and A. G. Chkhartishvili, Social Networks: Models of Informational Influence, Control and Confrontation (Fizmatlit, Moscow, 2010) [in Russian].MATHGoogle Scholar
  19. 19.
    D. Yanagizawa-Drott, “Propaganda and conflict: evidence from the Rwandan genocide,” Quart. J. Economics 129, 1947–1994 (2014). doi 10.1093/qje/qju020CrossRefGoogle Scholar
  20. 20.
    F. M. Bass, “A new product growth for model consumer durables,” Manage. Sci. 15, 215–227 (1969).CrossRefMATHGoogle Scholar
  21. 21.
    L. L. Delitsin, Quantitative Models of Innovation Propagation in the Field of Information and Telecommunication Technologies (MGUKI, Moscow, 2009) [in Russian].Google Scholar
  22. 22.
    A. P. Mikhailov, A. P. Petrov, M. I. Kalinichenko, and S. V. Polyakov, “Modeling the simultaneous distribution of legal and counterfeit copies of innovative products,” Math. Models Comput. Simul. 6, 25–31 (2014). doi 10.1134/S2070048214010116CrossRefMATHGoogle Scholar
  23. 23.
    G. B. Pronchev and V. I. Muravev, “Social networks as a factor of transition of Russia to innovative development,” Sociologiya, No. 3, 36–56 (2011).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. P. Mikhailov
    • 1
    • 2
  • A. P. Petrov
    • 1
  • O. G. Proncheva
    • 1
    • 3
  • N. A. Marevtseva
    • 2
  1. 1.Keldysh Institute of Applied MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia
  3. 3.Moscow Institute of Physics and Technology (State University)DolgoprudnyRussia

Personalised recommendations