Spiking and bursting of a fractional order of the modified FitzHugh-Nagumo neuron model

  • J. AlidoustiEmail author
  • R. Khoshsiar Ghaziani


This paper reports bursting behavior and related bifurcations in a fractional order FitzHugh-Nagumo neuron model, by adding sub fast-slow system. We classify different bursters of the system consisting fold/Hopf via a fold/fold hysteresis loop, homoclinic/homolininc cycle-cycle, fold/homoclinic, homoclinic/Hopf via homoclinic/fold hysteresis loop. We determine stability and dynamical behaviors of the equilibria of the system by numerical simulations.


fractional order bifurcation FitzHugh-Nagumo model fast-slow bursting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Diethelm, The Analysis of Fractional Differential Equations (Springer, Berlin, Heidelberg, 2010).CrossRefzbMATHGoogle Scholar
  2. 2.
    A. I. Ehibilik, R. M. Borisyuk, and D. Roose, “Numerical bifurcation analysis of a model of coupled neural oscillators,” Int. Ser. Numer. Math. 104, 215–228 (1992).MathSciNetzbMATHGoogle Scholar
  3. 3.
    G. B. Ermentrout and N. Kopell, “Parabolic bursting in an excitable system coupled with a slow oscillation,” SIAM J. Appl. Math. 46, 233–253 (1986).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    G. B. Ermentrout, “Type I membranes, phase resetting curves and synchrony,” Neural Comput. 8, 979–1001 (1996).CrossRefGoogle Scholar
  5. 5.
    R. Fitzhugh, “Impulses and physiological states in models of nerve membrane,” Biophys. J. 1, 445–466 (1961).CrossRefGoogle Scholar
  6. 6.
    R. Hifer, Application of Fractional Calculus in Physics (World Scientific, Singapore, 2000).CrossRefGoogle Scholar
  7. 7.
    A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and application to conduction and excitation in nerve,” J. Physiol. 117, 500–544 (1954).CrossRefGoogle Scholar
  8. 8.
    A. L. Hodgkin, “The local changes associated with repetitive action in a non-modulated axon,” J. Physiol. 107, 165–181 (1948).CrossRefGoogle Scholar
  9. 9.
    F. C. Hoppensteadt and E. M. Izhikevich, Weakly Connected Neural Networks (Springer, New York, 1997).CrossRefzbMATHGoogle Scholar
  10. 10.
    E. M. Izhikevich, “Class 1 neural excitability, conventional synapses, weakly confornected networks and mathematical foundations of pulse coupled models,” IEEE Trans. Neural Networks 10, 499–507 (1999).CrossRefGoogle Scholar
  11. 11.
    E. M. Izhikevich, “Neural excitability, spiking and bursting,” Int. J. Bifurcat. Chaos 10, 1171–1266 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    E. M. Izhikevich, “Subcritical elliptic bursting of bautin type,” SIAM J. Appl. Math. 60, 503–535 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    A. A. Kilbas, H. M. Srivastava, and J. J. Trujilo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006).Google Scholar
  14. 14.
    P. Kumar and O. P. Agrawal, “An approximate method for numerical solution of fractional differential equations,” Signal Proccess. 6, 2602–2610 (2006).CrossRefzbMATHGoogle Scholar
  15. 15.
    C. P. Li and Y. H. Wang, “Numerical algorithm based on Adomian decomposition for fractional differential equations,” Comput. Math. Appl. 57, 1627–1681 (2009).MathSciNetGoogle Scholar
  16. 16.
    R. L. Magin, “Fractional calculus in bioengineering,” Crit. Rev. Biomed. Eng. 32, 1–104 (2004).CrossRefGoogle Scholar
  17. 17.
    D. Mishra, A. Yadav, and P. K. Kalra, “Chaotic behavior in neural network and FitzHugh-Nagumo neuronal model,” Lect. Notes Comput. Sci. 3316, 868–873 (2004).CrossRefGoogle Scholar
  18. 18.
    C. A. Monje, Y. Q. Chen, B. M. Vinagre, D. Y. Xue, and V. Feliu, Fractional Order Systems and Controls: Fundamentals and Applications (Berlin, Springer, 2010).CrossRefzbMATHGoogle Scholar
  19. 19.
    C. Morris and H. Lecar, “Voltage oscillations in the Barnacle giant muscle fiber,” J. Biophys. 35, 193–213 (1981).CrossRefGoogle Scholar
  20. 20.
    I. Petras, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation (Springer, London, Beijing, 2011).CrossRefzbMATHGoogle Scholar
  21. 21.
    J. Rinzel, “Models in neurobiology,” in Nonlinear Phenomena in Physics and Biology (Plenum, New York, 1981), pp. 345–367.CrossRefGoogle Scholar
  22. 22.
    J. Rinzel and G. B. Ermentrout, “Analysis of neural excitability and oscillations,” in Methods in Neuronal Modeling (MIT, Cambridge, MA, 1989).Google Scholar
  23. 23.
    J. Rinzel, “A formal classification of bursting mechanisms in excitable systems,” Lect. Notes Biomath. 71, 267–281 (1987).MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    M. Shi and Z. Wang, “Abundant bursting patterns of a fractional-order Morris-Lecar neuron model,” Commun. Nonlin. Sci. Numer. Simulat. 19, 1956–1969 (2014).MathSciNetCrossRefGoogle Scholar
  25. 25.
    H. Wang and Q. Wang, “Bursting oscillations, bifurcation and synchronization in neuronal systems,” Chaos, Solitons, Fractals 44, 667–675 (2011).CrossRefzbMATHGoogle Scholar
  26. 26.
    S. Westerlund and L. Ekstam, “Capacitor theory,” IEEE Trans. Dielectr. Electr. Insul. 1 (8), 26–39 (1994).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Department of Applied MathematicsShahrekord UniversityShahrekordIran

Personalised recommendations