A correction method for dynamic model calculations using observational data and its application in oceanography

  • K. P. BelyaevEmail author
  • A. A. Kuleshov
  • N. P. Tuchkova
  • C. A. S. Tanajura


A new data assimilation method for the correction of model calculations is developed and applied. The method is based on the least resistance principle and uses the theory of diffusion-type stochastic processes and stochastic differential equations. Application of the method requires solving a system of linear equations that is derived from this principle. The system can be considered as a generalization of the well-known Kalman scheme taking the model’s dynamics into account. The method is applied to the numerical experiments with the HYbrid Coordinate Ocean Model (HYCOM) and Archiving, Validating, and Interpolating Satellite Ocean (AVISO) data for the Atlantic. The skill of the method is assessed using the results of the experiments. The model’s output is compared with the twin experiments, namely, the model calculations without assimilation, which confirms the consistency and robustness of the proposed method.


data assimilation methods path of least resistance principle ocean dynamics models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Ghil and P. Malnotte-Rizzoli, “Data assimilation in meteorology and oceanography,” Adv. Geophys. 33, 141–266 (1991).CrossRefGoogle Scholar
  2. 2.
    V. V. Penenko, Methods of Numerical Modelling of Atmospheric Processes (Gidrometeoizdat, Leningrad, 1981) [in Russian].Google Scholar
  3. 3.
    G. I. Marchuk and V. V. Penenko, “Application of perturbation theory to problems of simulation of atmospheric processes,” in Monsoon Dynamics, Ed. by J. Lighthill and R. Pearce (Cambridge Univ. Press, Cambridge, 1981), pp. 639–655.CrossRefGoogle Scholar
  4. 4.
    G. I. Marchuk and V. B. Zalesny, “A numerical technique for geophysical data assimilation problems using Pontryagin’s principle and splitting-up method,” Russ. J. Numer. Anal. Math. Model. 8, 311–326 (1993).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    V. B. Zalesny and A. S. Rusakov, “Numerical algorithm of data assimilation based on splitting and adjoint equation methods,” Russ. J. Numer. Anal. Math. Model. 22, 199–219 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    V. P. Shutyaev and E. I. Parmuzin, “Some algorithms for studying solution sensitivity in the problem of variational assimilation of observation data for a model of ocean thermodynamics,” Russ. J. Numer. Anal. Math. Model. 24, 145–160 (2009).MathSciNetzbMATHGoogle Scholar
  7. 7.
    V. I. Agoshkov, E. I. Parmuzin, and V. P. Shutyaev, “Observational data assimilation in the problem of Black Sea circulation and sensitivity analysis of its solution,” Izv. Atmos. Ocean. Phys. 49, 592–602 (2013).CrossRefGoogle Scholar
  8. 8.
    O. Talagrand and P. Courtier, “Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory,” Quart. J. R. Meteorol. Soc. 113, 1311–1328 (1987).CrossRefGoogle Scholar
  9. 9.
    G. Evensen, “Sequential data assimilation with a non-linear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics,” J. Geophys. Res., No. 6, 1014–1062 (1994).Google Scholar
  10. 10.
    G. Evensen, “The ensemble Kalman filter: theoretical formulation and practical implementation,” Ocean Dyn. 53, 343–367 (2003).CrossRefGoogle Scholar
  11. 11.
    K. Belyaev, C. A. S. Tanajura, and J. J. O’Brien, “A data assimilation technique with an ocean circulation model and its application to the tropical Atlantic,” Appl. Math. Model. 25, 655–670 (2001).CrossRefzbMATHGoogle Scholar
  12. 12.
    C. A. S. Tanajura and K. Belyaev, “A sequential data assimilation method based on the properties of diffusiontype process,” Appl. Math. Model. 33, 2165–2174 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    A. C. Lorenc, N. E. Bowler, A. M. Clayton, S. R. Pring, and D. Fairbairn, “Comparison of hybrid-4DEnVar and hybrid-4DVar data assimilation methods for global NW,” Mon. Wea. Rev. 143, 212–229 (2015).CrossRefGoogle Scholar
  14. 14.
    R. Bleck and D. B. Boudra, “Initial testing of a numerical ocean circulation model using a hybrid quasi-isopycnal vertical coordinate,” J. Phys. Oceanogr., No. 11, 755–770 (1981).CrossRefGoogle Scholar
  15. 15.
    R. Bleck, “An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates,” Ocean Model., No. 4, 55–88 (2002).CrossRefGoogle Scholar
  16. 16.
    C. A. S. Tanajura and L. N. Lima, “Assimilation of sea surface height anomalies into hycom with an optimal interpolation scheme over the Atlantic ocean Metarea V,” Geophys. Bras. J. 31, 257–270 (2013).Google Scholar
  17. 17.
    K. P. Belyaev, K. A. S. Tanazhura, and N. P. Tuchkova, “Comparison of Argo drifter data assimilation methods for hydrodynamic models,” Oceanology 52, 523–615 (2012).CrossRefGoogle Scholar
  18. 18.
    F. P. Vasil’ev, Optimization Methods (Faktorial, Moscow, 2002) [in Russian].Google Scholar
  19. 19.
    W. M. Wonham, “Stochastic problems in optimal control,” in IEEE International Convention Record (1963), Pt. 11, pp. 114–124.Google Scholar
  20. 20.
    E. P. Chassignet, H. E. Hurlburt, E. J. Metzger, O. M. Smedstad, J. Cummings, G. R. Halliwell, R. Bleck, R. Baraille, A. J. Wallcraft, and C. Lozano, “US GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean Model (HYCOM),” Oceanography 22, 64–75 (2009).CrossRefGoogle Scholar
  21. 21.
    E. Kalnay et al., “The NCEP/NCAR 40-year reanalysis project,” Bull. Am. Meteorol. Soc. 77, 437–472 (1996).CrossRefGoogle Scholar
  22. 22.
    J. Xie and J. Zhu, “Ensemble optimal interpolation schemes for assimilating Argo profiles into a hybrid coordinate ocean model,” Ocean Model. 33, 283–298 (2010).MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • K. P. Belyaev
    • 1
    • 2
    • 4
    Email author
  • A. A. Kuleshov
    • 3
  • N. P. Tuchkova
    • 2
  • C. A. S. Tanajura
    • 4
  1. 1.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia
  2. 2.Federal Research Center “Computer Science and Control” of Russian Academy of SciencesMoscowRussia
  3. 3.Federal Research Center Keldysh Institute of Applied Mathematics of Russian Academy of SciencesMoscowRussia
  4. 4.Federal University of BahiaSalvadorBrazil

Personalised recommendations