Skip to main content
Log in

Numerical simulation of solitary wave generation in a wind-water annular tunnel

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

We briefly describe laboratory experiments demonstrating wind-water solitary wave generation in a wind-water annular tunnel. A mathematical model of this phenomenon is constructed in the context of a shallow-water approximation. The finite-difference algorithm for solving the system is based on regularized shallow-water equations. For the first time, we obtain a numerical solution of the wind-water solitary wave that is qualitatively consistent with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. V. Levin and M. A. Nosov, Physics of Tsunamis (Yanus-K, Moscow, 2005) [in Russian].

    Google Scholar 

  2. O. A. Glebova, Al. V. Kravtsov, and N. K. Shelkovnikov, “Experimental and Numerical Study of Wind Solitary Waves on Water,” Izv. Akad. Nauk, Ser. Fiz. 66(12), 1727–1729 (2002).

    Google Scholar 

  3. N. K. Shelkovnikov, “Induced Soliton in a Fluid,” JETP Lett. 82(10), 638–641 (2005).

    Article  Google Scholar 

  4. Al. N. Kravtsov, V. V. Kravtsov, and N. K. Shelkovnikov, “A Numerical Experiment on the Modeling of Solitary Waves on the Surface of a Fluid in an Annular Channel,” Comput. Math. Math. Phys. 44(3), 529–531 (2004).

    MathSciNet  Google Scholar 

  5. R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, et al., Solitons and Nonlinear Wave Equations (Academic Press, London, 1982; Mir, Moscow, 1988).

    MATH  Google Scholar 

  6. A. N. Volobuev, V. I. Koshev, and E. S. Petrov, Biophysical Principles of Geodynamics (Moscow, 2009) [in Russian].

  7. T. G. Elizarova and O. V. Bulatov, “Regularized Shallow Water Equations and a New Method of Simulation of the Open Channel Flows,” Comput. Fluids 46(1), 206–211 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  8. O. V. Bulatov and T. G. Elizarova, “Regularized Shallow Water Equations and an Efficient Method for Numerical Simulation of Shallow Water Flows,” Comput. Math. Math. Phys. 51(1), 160–173 (2011).

    Article  MathSciNet  Google Scholar 

  9. T. G. Elizarova, A. A. Zlotnik, and O. V. Nikitina, “Simulation of One-Dimensional Shallow-Water Flows using Regularized Equations,” Preprint No. 33 (Keldysh Inst. Appl. Math., Moscow, 2011).

    Google Scholar 

  10. T. G. Elizarova, Quasi-Gas Dynamic Equations and Methods for the Computation of Viscous Flow (Nauchnyi mir, Moscow, 2007) [in Russian]. English Translation: Springer 2009.

    Google Scholar 

  11. Yu. V. Sheretov, Dynamics of Continuous Media in Spatial and Temporal Averaging (RC Dynamics, Moscow-Izhevsk, 2009) [in Russian].

    Google Scholar 

  12. G. I. Marchuk, Mathematical Modeling in the Problem of Environment (Nauka, Moscow, 1982) [In Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Elizarova.

Additional information

Original Russian Text © T.G. Elizarova, M.A. Istomina, N.K. Shelkovnikov, 2012, published in Matematicheskoe Modelirovanie, 2012, Vol. 24, No. 4, pp. 107–116.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elizarova, T.G., Istomina, M.A. & Shelkovnikov, N.K. Numerical simulation of solitary wave generation in a wind-water annular tunnel. Math Models Comput Simul 4, 552–559 (2012). https://doi.org/10.1134/S2070048212060051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048212060051

Keywords

Navigation