Mathematical Models and Computer Simulations

, Volume 2, Issue 6, pp 738–752 | Cite as

Modeling of aerodynamics and pollution dispersion from traffic in the urban sublayer

  • R. B. Nuterman
  • A. A. Baklanov
  • A. V. Starchenko


A numerical microscale model of aerodynamics and the transport of pollution was developed. The model takes into account the nonhomogeneity of elements of the urban boundary layer. The numerical solution of the differential problem is based on the finite volume method. On the basis of experiments, a comparison of three different turbulent closure schemes and parameterizations of the urban vegetation was conducted. Turbulent air dynamics and the transport of pollution were modeled around an array of buildings.


air pollution microscale models of aerodynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. B. Nuterman, A. V. Starchenko, and A. A. Baklanov, “Development and Analysis of Microscale Meteorological Model for Researching the Air Mass Flows in the Urban,” Vychislit. Tekhnol. 13(3), 37–43 (2008).Google Scholar
  2. 2.
    P. Louka, M. Ketzel, P. Sahm, E. Guilloteau, N. Moussioroulos, J.-F. Sini, R.G. Mestauer, and R. Verkowiez, “SFD Intercomparison Exercise Within TRAROS European Research Network,” in Proc. 7th Int. Conf. on Environmental Science and Technology (Syros, 2001), Available from
  3. 3.
    J. Ehrhard, R. Kunz, and N. Moussiopoulos, “On the Performance and Applicability of Nonlinear Two-Equation Turbulence Models for Urban Air Quality Modeling,” Environ. Monit. Assess. 65, 201–209 (2000).CrossRefGoogle Scholar
  4. 4.
    G. G. Katul, L. Mahrt, D. Poggy, and C. Sanz, “One- and Two-Equation Models for Canopy Turbulence,” Boundary-Layer Meteorol. 113, 81–109 (2004).CrossRefGoogle Scholar
  5. 5.
    J. D. Wilson and R. H. Shaw, “A Higher-Order Closure Model for Canopy Flow,” J. Appl. Meteorol. 16, 1198–1205 (1977).CrossRefGoogle Scholar
  6. 6.
    K. W. Ayotte, J. J. Finnigan, and M. R. Raupach, “A Second-Order Closure for Neutrally Stratified Vegetative Canopy Flows,” Boundary-Layer Meteorol. 90, 189–216 (1999).CrossRefGoogle Scholar
  7. 7.
    J. Katolicky and M. Jicha, “Eulerian-Lagrangian Model for Traffic Dynamics and Its Impact on Operational Ventilation of Road Tunnels,” J. Wind Eng. Industr. Aerodynam. 93, 61–77 (2005).CrossRefGoogle Scholar
  8. 8.
    D. Bäumer, B. Vogel, and F. Fiedler, “A New Parameterisation of Motorway-Induced Turbulence and Its Application in a Numerical Model,” Atmos. Environ. 39, No. 31, 5750–5759 (2005).CrossRefGoogle Scholar
  9. 9.
    E. Yee and C. A. Biltoft, “Concentration Fluctuation Measurements in a Plume Dispersing through a Regular Array of Obstacles,” Boundary-Layer Meteorol. 111, 363–415 (2004).CrossRefGoogle Scholar
  10. 10.
    M. W. Rotach, R. Vogt, C. Bernhofer, E. Batchvarova, A. Christen, A. Clappier, B. Feddersen, S.-E. Gryning, G. Martucci, H. Mayer, V. Mitev, T. R. Oke, E. Parlow, H. Richner, M. Roth, Y.-A. Roulet, D. Ruffieux, J.A. Salmond, M. Schatzmann, and J. A. Voogt, “BUBBLE an Urban Boundary Layer Meteorology Project,” Theor. Appl. Climatol. 81, Nos. 3–4, 231–261 (2005).CrossRefGoogle Scholar
  11. 11.
    L. G. Loitsyanskii, Fluid Mechanics: Student’s Book for High School, 7th ed. (Drofa, Moscow, 2003) [in Russian].Google Scholar
  12. 12.
    B. E. Launder and D. B. Spalding, “The Numerical Computation of Turbulent Flows,” Comput. Meth. Appl. Mech. Eng. 3, No. 2, 269–289 (1974).zbMATHCrossRefGoogle Scholar
  13. 13.
    T. J. Craft, B. E. Launder, and K. Suga, “Development and Application of a Cubic Eddy Viscosity Model of Turbulence,” Int. J. Heat Fluid Flow 17, 108–115 (1996).CrossRefGoogle Scholar
  14. 14.
    B. E. Launder, “Second-Moment Closure and Its Use in Modeling Turbulent Industrial Flows,” Int. J. Num. Meth. Fluids 9, 963–985 (1989).CrossRefMathSciNetGoogle Scholar
  15. 15.
    F. S. Lien and M. A. Leschziner, “Assessment of Turbulent Transport Models Including Non-Linear RNG Eddy-Viscosity Formulation and Second-Moment Closure,” Comput. Fluids 23, No. 8, 983–1004 (1994).zbMATHCrossRefGoogle Scholar
  16. 16.
    R. Louka, Contribution of Retroula Louka to the TRAROS WG-TRT Meeting in Cambridge (2000), Available from
  17. 17.
    C. C. Chieng and B. E. Launder, “On the Calculation of Turbulent Heat Transport Downstream from an Abrupt Pipe Expansion,” Num. Heat Transfer 3, 189–207 (1980).CrossRefGoogle Scholar
  18. 18.
    S. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere Pub., 1980; Energoatomizdat, Moscow, 1984).Google Scholar
  19. 19.
    A. A. Samarskii and P. N. Vabishchevich, Numerical Methods for Solving the Convection-Diffusion Problems (Editorial URSS, Moscow, 1999) [in Russian].Google Scholar
  20. 20.
    P. N. Vabishchevich, Methods of Fictitious Areas in Mathematical Physics Problems (Mosk. Gos. Univ., Moscow, 1991) [in Russian].Google Scholar
  21. 21.
    B. Van Leer, “Towards the Ultimate Conservative Difference Scheme. II. Monotonicity and Conservation Combined in a Second Order Scheme,” J. Comput. Phys. 14, 361–370 (1974).CrossRefGoogle Scholar
  22. 22.
    V. P. Il’in, Methods of Incomplete Factorization for Solving the Algebraic Systems (Fizmatlit, Moscow, 1995) [in Russian].Google Scholar
  23. 23.
    Turbulent Shear Flows, Ed. by A. S. Ginevskii (Mashinostroenie, Moscow, 1982), Vol. 1.Google Scholar
  24. 24.
    A. Kimura, T. Iwata, A. Mochida, H. Yoshino, R. Ooka, and S. Yoshida, “Optimization of Plant Canopy Model for Reproducing Aerodynamic Effects of Trees: (Part 1) Comparison between the Canopy Model Optimized by the Present Authors and That Proposed by Green,” Summ. Tech. Pap. Ann. Meeting Architect. Inst. Jpn. 9, 721, 722 (2003).Google Scholar
  25. 25.
    M. Ketzel, R. Berkowiez, and A. Lohmeyer, “Comparison of Numerical Street Dispersion Models with Results from Wind Tunnel and Field Measurements,” Environ. Monit. Assess. 65, 363–370 (2000).CrossRefGoogle Scholar
  26. 26.
    J. Eichhorn, MISKAM-Handbuch zur Version 3.xx, (Giese-Eichhorn, Wackernheim, Oct. 1998).Google Scholar
  27. 27.
    R. Berkowiez, “OSPM: A Parameterized Street Pollution Model,” Environ. Monit. Assess. 65, 323–331 (2000).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • R. B. Nuterman
    • 1
  • A. A. Baklanov
    • 2
  • A. V. Starchenko
    • 1
  1. 1.Tomsk State UniversityTomskRussia
  2. 2.Danish Meteorological InstituteCopenhagenDenmark

Personalised recommendations