Mathematical Models and Computer Simulations

, Volume 2, Issue 1, pp 116–130 | Cite as

Elastic properties of composite materials

  • Y. I. Dimitrienko
  • A. P. Sokolov


A developed system is presented for computer-aided calculation of the effective elastic properties of composite materials (CM) with various reinforcement structure (3D-reinforced, 4D-reinforced, textile reinforcement). The computation was based on the finite-element method for the solution of the so-called local problems L pq arising on applying the asymptotic homogenization method worked out by N.S. Bakhvalov and B.Ye. Pobedrya. The calculation results for effective elastic properties of CM obtained by the developed software system are presented as well as some characteristics of the system application to the above-listed types of reinforcement structures.


Composite Material Local Problem Periodicity Cell Composite Material Effective Characteristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. J. Pagano, “Exact Moduli of Anisotropic Laminates,” in Mechanics of Composite Materials, 2nd ed., Ed. by G. P. Sendecky (Academic Press, New York, 1974), vol. 2 pp. 38–60.Google Scholar
  2. 2.
    C. C. Chamis, “Microchemical Failure Theory,” in Fracture and Fatigue, Ed. by L. J. Broutman and R. H. Krock (Academic Press, New York, 1974), vol. 5, pp. 106–153.Google Scholar
  3. 3.
    R. M. Jones, Mechanics of Composite Materials (Hemisphere, 1975).Google Scholar
  4. 4.
    R. M. Christensen, Mechanics of Composite Materials (John Wiley & Sons, 1979).Google Scholar
  5. 5.
    V. V. Bolotin and Yu. N. Novichkov, Mechanics of Sandwich Structures (Mashinostroenie, Moscow, 1980) [in Russian].Google Scholar
  6. 6.
    Van Fo Fy, Structures Made of Reinforced Plastics (Tekhnika, Kiev, 1971) [in Russian].Google Scholar
  7. 7.
    N. S. Bakhvalov and G. P. Panasenko, Processes Averaging in Periodic Mediums (Nauka, Moscow, 1984) [in Russian].Google Scholar
  8. 8.
    B. E. Podberya, Mechanics of Composite Materials (MGU, Moscow, 1984) [in Russian].Google Scholar
  9. 9.
    A. Bensousson, J. L. Lions, and G. Papanicolaou, Analysis for Periodic Structures (North Holland, Amsterdam, 1978).Google Scholar
  10. 10.
    J. L. Lions, “Remarks on Some Asymptotic Problems in Composite Materials and Perforated Materials,” in Proc. of the IUTAM Symp. Northwestern Univ., Ed. by Nemat-Nasser (North-Holland, 1979).Google Scholar
  11. 11.
    E. Sanchez-Palencia, Non-Homogeneus Media and Vibration Theory (Springer-Verlag, New York, 1980).Google Scholar
  12. 12.
    B. E. Podberya and V. A. Mol’kov, “Efficient Modules of Elasticity of Fiber and Laminate-Fiber Composites,” Vychisl. Mekh. Deformiruemogo Tverd. Tela, (1), 41–63 (1990).Google Scholar
  13. 13.
    Yu. I. Dmitrienko and A. I. Kashkarov, “Finite-Element Method to Calculate Efficient Characteristics of Spatialy-Reinforeced Composites,” Vestn. MGTU im. N. E. Baumana, Ser. Estestv. Nauki, No. 2, 95–108 (2002).Google Scholar
  14. 14.
    Yu. I. Dmitrienko, A. I. Kashkarov, and A. A. Makashov, “Development of Finite-Element Method to Solve the Local Problems of Elasticity Theory at ‘Cell of Periodicity’ for the Composites with Periodical Spatial Structure,” in Mathematics in Modern World, Ed. by Yu. A. Drobyshev (KGPU, Kaluga, 2004), pp. 177–191 [in Russian].Google Scholar
  15. 15.
    Yu. I. Dmitrienko, A. I. Kashkarov, and A. A. Makashov, “Finite-Element Simulation of Failture Process of Spatially-Reinforced Composites with Periodical Structure,” in Modern Natural-Scientific and Humanitarian Problems — Proc. Conf. “40th Anniversary of Basic Science Faculty” (Logos, Moscow, 2004), pp. 485–498 [in Russian].Google Scholar
  16. 16.
    Yu. I. Dimitrienko, A. P. Sokolov, and A. I. Kashkarov, “Development of Finite-Element Method to Solve the Problems of Efficient Performances Calculation of Composite Materials on Multi-Processor Computation Systems,” in Aerospace Technologies (MGTU im. N. E. Baumana, Moscow, 2004), pp. 113–114 [in Russian].Google Scholar
  17. 17.
    Yu. I. Dimitrienko, Tensor Calculus (Vysshaya shkola, Moscow, 2001) [in Russian].Google Scholar
  18. 18.
    J. M. Whitney, Structural Analysis of Laminated Anisotropic Plates (Technomic, Lancaster, 1987).Google Scholar
  19. 19.
    Ts.-W. Chou and T. Isikawa, “Analysis and Modeling of 2D Textile Composites,” in Textile Composite Materials, Ed. by Ts.-W. Chou and F. K. Ko, (Elsevier, 1989), pp. 243–301.Google Scholar
  20. 20.
    Yu. M. Tarnopol’skii, I. G. Zhigun, and V. A. Polyakov, Spatially-Reinforced Composite Materials (Mashinostroenie, Moscow, 1987) [in Russian].Google Scholar
  21. 21.
    Yu. I. Dimitrienko, Thermomechanical Behavior of Composite Materials and Structures under High Temperatures. 1. Materials, 2. Structures, Composites. Part A: Applied Science and Manufacturing (Kluwer Academic Publishers, 1997), vol. 28A.Google Scholar
  22. 22.
    Yu. I. Dimitrienko, “Modeling of Mechanical Properties of Composite Materials under High Temperatures. Part 3. Textile Composites,” Int. J. Appl. Composite Mat. 5, No. 4 (1998).Google Scholar
  23. 23.
    Yu. I. Dimitrienko, “A Structural Thermo-Mechanical Model of Textile Composite Materials at High Temperatures,” in Composite Science and Technologies (1999), vol. 59.Google Scholar
  24. 24.
    Yu. I. Dimitrienko, Termomechanics of Composites under High Temperatures (Kluwer Acad. Publishers, Dordrecht, 1999).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • Y. I. Dimitrienko
    • 1
  • A. P. Sokolov
    • 1
  1. 1.Department FN-11Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations