Advertisement

q-Extension of Fubini Numbers

  • Hamadoun MaïgaEmail author
Research Articles
  • 4 Downloads

Abstract

In this paper we define a q-extension of Fubini numbers which we call q-Fubini numbers, and generalized q-Fubini numbers of order r. Using the p-adic Laplace transform and p-adic integration, we obtain these numbers as moments of appropriate p-adicmeasures. Then we establish some identities and congruences for these numbers. We establish also a relationship between generalized q-Fubini numbers of order r and q-Fubini numbers. Further, as done in previous works we introduce a concept of generalized q-Fubini numbers, attached to a continuous pp-invariant function ψ defined on ℤp. These numbers are also the moments of appropriate p-adic measures, we obtain identities and congruences which generalize those associated to q-Fubini numbers.

Key words

p-adic measures moments sequence Laplace transform q-Fubini numbers congruences identities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. F. Coleman, “Dilogarithms, regulators and p-adic L-functions,” Invent.Math. 69, 171–208 (1982).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    L. Comtet, Advanced Combinatorics (D. Reidel Publishing Compagny, Dordrecht,Holland, 1974). First published in 1970 by Presses Universitaires de France, Paris.CrossRefzbMATHGoogle Scholar
  3. 3.
    T. Diagana and H. Maïga, “Some new identities and congruences for Fubini numbers,” J. Numb. Theory 173, 547–569 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    B. Diarra, Bases deMahler et autres, Sé minaire d’Analyse-Université Blaise Pascal, Exposé 16-MR, 98e, 46093 (1994-1995).Google Scholar
  5. 5.
    B. Diarra, “The p-adic q-distributions,” Contemp. Math. 596, 45–62 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    A. Escassut, Analytic Elements in p-Adic Analysis (World Scientific Publishing Company, 1995).CrossRefzbMATHGoogle Scholar
  7. 7.
    D. Foata, “Les polynô mes Eulé riens, d’Euler à Carlitz,” pré print.Google Scholar
  8. 8.
    L. Van Hamme, “The p-adic Z-transform,” Proceedings of the 3rd Intern. Conference on p-Adic Functional Analysis, (Aubiè re, 1994), Ann. Math. Blaise Pascal 2 (1), 131–146 (1995).MathSciNetzbMATHGoogle Scholar
  9. 9.
    N. Koblitz, “A new proof of certain formulas for p-adic L-functions,” Duke Math. J. 46, 455–468 (1979).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    N. Koblitz, p-Adic Analysis: A short course on recent work (Cambridge University Press, Cambridge, 1980).CrossRefzbMATHGoogle Scholar
  11. 11.
    H. Maïga, “Some identities and congruences concerning Euler numbers and polynomials,” J. Numb. Theory 130, 1590–1601 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    H. Maïga, “Some identities and congruences forGenocchi numbers,” Contemp.Math. 551, 207–220 (2011).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.DER de Mathématiques et d’Informatique, Faculté des Sciences et Techniques (FST)Université des Sciences des Techniques et des Technologies de Bamako (USTTB)BamakoMali

Personalised recommendations