Advertisement

Biology as a Constructive Physics

  • S. V. Kozyrev
Research Articles
  • 8 Downloads

Abstract

Yuri Manin’s approach to Zipf’s law (Kolmogorov complexity as energy) is applied to investigation of biological evolution. Model of constructive statistical mechanics where complexity is a contribution to energy is proposed to model genomics. Scaling laws in genomics are discussed in relation to Zipf’s law. This gives a model of Eugene Koonin’s Third Evolutionary Synthesis – physical model which should describe scaling in genomics.

Key words

Kolmogorov complexity complexity as energy third evolutionary synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. I. Manin, “Complexity vs energy: theory of computation and theoretical physics,” J. Phys.: Conf. Series 532, 012018 (2014). [arXiv: 1302.6695].Google Scholar
  2. 2.
    Yu. I. Manin, “Error-correcting codes and neural networks,” Sel. Math. New Ser. 24, 521–530 (2018).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Yu. Manin, “Neural codes and homotopy types: mathematical models of place field recognition,” Moscow Math. J. 15, 741–748 (2015). [arXiv:1501.00897].MathSciNetzbMATHGoogle Scholar
  4. 4.
    Yu. Manin and M. Marcolli, “Semantic spaces,” Math. Comput. Sci. 10 (4), 459–477 (2016). [arXiv: 1605.04328].MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    E. V. Koonin, The Logic of Chance: The Nature and Origin of Biological Evolution (FT Press, 2012).Google Scholar
  6. 6.
    E. V. Koonin, “Are there laws of genome evolution?,” PLoS Comput. Biol. 7 (8), e1002173 (2011).MathSciNetCrossRefGoogle Scholar
  7. 7.
    M. Barbieri, “What is code biology?,” BioSystems 164, 1–10 (2018).CrossRefGoogle Scholar
  8. 8.
    Power Laws, Scale-Free Networks and Genome Biology, Eds. E. V. Koonin, Y. I. Wolf and G. P. Karev (Springer, 2006).Google Scholar
  9. 9.
    V. Avetisov, A. Gorsky, S. Nechaev and O. Valba, “Finite plateau in spectral gap of polychromatic constrained random networks,” Phys. Rev. E 96, 062309 (2017). [arXiv:1705.00233].CrossRefGoogle Scholar
  10. 10.
    A. Ansari, J. Berendzen, S. F. Bowne, H. Frauenfelder, I. E. Iben, T. B. Sauke, E. Shyamsunder and R. D. Young, “Protein states and proteinquakes,” PNAS 82 (15), 5000–5004 (1985).CrossRefGoogle Scholar
  11. 11.
    H. Frauenfelder, “Complexity in proteins,” Nature Struct. Biol. 2, 821–823 (1995).CrossRefGoogle Scholar
  12. 12.
    V. A. Avetisov, A. Kh. Bikulov and S. V. Kozyrev, “Application of p-adic analysis to models of spontaneous breaking of replica symmetry,” J. Phys. A 32, 8785–8791 (1999). [arXiv: cond-mat/9904360].MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Y. I. Wolf, M. I. Katsnelson and E. V. Koonin, “Physical foundations of biological complexity,” PNAS (2018). [arXiv: 1803.09975].Google Scholar
  14. 14.
    G. Parisi and N. Sourlas, “p-Adic numbers and replica symmetry breaking,” Eur. Phys. J. B. 14 (3), 535–542 (2000). [arXiv: cond-mat/9906095].MathSciNetCrossRefGoogle Scholar
  15. 15.
    S.V. Kozyrev, “Ultrametricity in the theory of complex systems,” Theor.Math. Phys. 185 (2), 46–360 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    A. Yu. Khrennikov and S. V. Kozyrev, “Genetic code on the diadic plane,” Phys. A: Stat.Mech. Appl. 381, 265–272 (2007). [arXiv:q-bio.QM/0701007].CrossRefGoogle Scholar
  17. 17.
    B. Dragovich, A. Yu. Khrennikov and N. Ž. Mišić, “Ultrametrics in the genetic code and the genome,” Appl. Math. Comput. 309, 359–358 (2017). [arXiv: 1704.04194].MathSciNetCrossRefGoogle Scholar
  18. 18.
    S. M. Marshall, A. R. Gmurray and L. Cronin, “A probabilistic framework for identifying biosignatures using pathway complexity,” Phil. Trans. R. Soc. A 375, 20160342 (2017).CrossRefGoogle Scholar
  19. 19.
    A. N. Kolmogorov, “Three approaches to the definition of the concept ”quantity of information”,” Probl. Peredachi Inf. 1 (1), 3–11 (1965) [in Russian].MathSciNetzbMATHGoogle Scholar
  20. 20.
    A. Kolmogoroff, “On the logical foundations of information theory and probability theory,” Probl. Peredachi Inf. 5 (3), 3–7 (1969). Problems Inform. Transmission 5 (3), 1–4 (1969).MathSciNetGoogle Scholar
  21. 21.
    Yu. I. Manin, Computable and Uncomputable (Moscow, 1980) [in Russian].Google Scholar
  22. 22.
    N. C. Jones and P. A. Pevzner, An Introduction to Bioinformatics Algorithms (MIT Press, 2004).Google Scholar
  23. 23.
    V. N. Vapnik, The Nature of Statistical Learning Theory (Springer, 1995).CrossRefzbMATHGoogle Scholar
  24. 24.
    J. Schmidhuber, “Discovering neural nets with low Kolmogorov complexity and high generalization capability,” Neural Netw. 10 (5), 857–873 (1997).CrossRefGoogle Scholar
  25. 25.
    P. E. Leopold, M. Montal and J. N. Onuchic, “Protein folding funnels: a kinetic approach to the sequencestructure relationship,” PNAS 89 (18), 8721–8725 (1992).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations