Active Beam Splitting Attack Applied to Differential Phase Shift Quantum Key Distribution Protocol

  • A. S. Avanesov
  • D. A. Kronberg
  • A. N. Pechen
Research Articles


The differential phase shift quantum key distribution protocol is of high interest due to its relatively simple practical implementation. This protocol uses trains of coherent pulses and allows the legitimate users to resist individual attacks. In this paper, a new attack on this protocol is proposed which is based on the idea of information extraction from the part of each coherent state and then making decision about blocking the rest part depending on the amount of extracted information.

Key words

quantum cryptoraphy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. H. Bennett and G. Brassard, Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, p. 175 (1984).Google Scholar
  2. 2.
    A. S. Holevo, Probl. Inform. Transm. 9 (3), 177 (1973).Google Scholar
  3. 3.
    A. S. Holevo, Quantum Systems, Channels, Information. A Mathematical Introduction (De Gruyter, 2012).CrossRefzbMATHGoogle Scholar
  4. 4.
    R. Renner, Security of Quantum Key Distribution, PhD Thesis, [quant-ph/0512258] (2005).zbMATHGoogle Scholar
  5. 5.
    A. S. Trushechkin, P. A. Tregubov, E. O. Kiktenko, Y. V. Kurochkin and A. K. Fedorov, Phys. Rev. A 97, 012311 (2018).CrossRefGoogle Scholar
  6. 6.
    B. Huttner, N. Imoto, N. Gisin and T. Mor, Phys. Rev. A 5 (1), 1863 (1995).CrossRefGoogle Scholar
  7. 7.
    M. Dusek, M. Jahma and N. Lutkenhaus, Phys. Rev. A 62, 022306 (1999).CrossRefGoogle Scholar
  8. 8.
    A. S. Trushechkin, E. O. Kiktenko and A. K. Fedorov, Phys. Rev. A 96, 022316 (2017).CrossRefGoogle Scholar
  9. 9.
    K. Inoue, E. Waks and Y. Yamamoto, “Differential phase shift quantum key distribution,” Phys. Rev. Lett. 89, 037902 (2002).CrossRefGoogle Scholar
  10. 10.
    K. Tamaki, M. Koashi and G. Kato, [arXiv:1208.1995] (2012).Google Scholar
  11. 11.
    A. Mizutani, T. Sasaki, G. Kato, Y. Takeuchi and K. Tamaki, Quant. Sci. Techn. 3, 014003 (2018).CrossRefGoogle Scholar
  12. 12.
    D. A. Kronberg and S. V. Molotkov, JETP 118-1, 1 (2014).CrossRefGoogle Scholar
  13. 13.
    D. A. Kronberg, Laser Phys. 24, 025202 (2014).CrossRefGoogle Scholar
  14. 14.
    D. A. Kronberg, E. O. Kiktenko, A. K. Fedorov and Yu. V. Kurochkin, Quant. Electr. 47, 2 (2017).CrossRefGoogle Scholar
  15. 15.
    M. Curty, L. L. Zhang, H-K. Lo and N. Lutkenhaus, “Sequential attacks against differential-phase-shift quantum key distribution with weak coherent states,” Quant. Inf. Comput. 7, 665 (2007).MathSciNetzbMATHGoogle Scholar
  16. 16.
    C. Branciard, N. Gisin and V. Scarani, “Upper bounds for the security of two distributed-phase reference protocols of quantum cryptography,” New J. Phys. 10, (2008).Google Scholar
  17. 17.
    D. D’Alessandro Introduction to Quantum Control and Dynamics (Boca Raton, Chapman & Hall, 2008)zbMATHGoogle Scholar
  18. 17a.
    H. M. Wiseman and G.J. Milburn, Quantum Measurement and Control (Cambridge Univ. Press, Cambridge, 2009).CrossRefzbMATHGoogle Scholar
  19. 18.
    C. Brif, R. Chakrabarti and H. Rabitz, in Advances in Chemical Physics, eds. S. A. Rice and A. R. Dinner, vol. 148, p. 1 (Wiley, New York, 2012).Google Scholar
  20. 19.
    A. S. Trushechkin and I. V. Volovich, “Perturbative treatment of inter-site couplings in the local description of open quantum networks,” EPL 113 (3), 30005 (2016).CrossRefGoogle Scholar
  21. 20.
    I. V. Volovich and S. V. Kozyrev, “Manipulation of states of a degenerate quantum system,” Proc. Steklov Inst.Math. 294, 241–251 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 21.
    S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny and F. K. Wilhelm, Eur. Phys. J. D 69, 279 (2015).CrossRefGoogle Scholar
  23. 22.
    A. S. Trushechkin, “Semiclassical evolution of quantum wave packets on the torus beyond the Ehrenfest time in terms of Husimi distributions,” J.Math. Phys. 58 (6), 62102 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  24. 23.
    I. V. Volovich, “Cauchy-Schwarz inequality-based criteria for the non-classicality of sub-Poisson and antibunched light,” Phys. Lett. A 380 (1), 56–58 (2016).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. S. Avanesov
    • 1
  • D. A. Kronberg
    • 2
  • A. N. Pechen
    • 2
    • 3
  1. 1.Moscow Institute of Physics and TechnologyDolgoprudnyRussia
  2. 2.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia
  3. 3.The National University of Science and Technology “MISiS”MoscowRussia

Personalised recommendations