Ultrametricity indices for the Euclidean and Boolean hypercubes

Research Articles

Abstract

Motivated by Murtagh’s experimental observation that sparse random samples of the hypercube become more and more ultrametric as the dimension increases, we consider a strict version of his ultrametricity coefficient, an index derived from Rammal’s degree of ultrametricity, and a topological ultrametricity index. First, we prove that the three ultrametricity indices converge in probability to one as dimension increases, if the sample size remains fixed. This is done for uniformly and normally distributed samples in the Euclidean hypercube, and for uniformly distributed samples in F2N with Hamming distance, as well as for very general probability distributions. Further, this holds true for random categorial data in complete disjunctive form. A second result is that the ultrametricity indices vanish in the limit for the full hypercube F2N as dimensionN increases,whereby Murtagh’s ultrametricity index is largest, and the topological ultrametricity index smallest, if N is large.

Key words

ultrametricity Vietoris-Rips graph hypercube 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Benois-Pineau, A. Yu. Khrennikov and N. V. Kotovich, “Segmentation of images in p-adic and Euclidean metrics,” Dokl.Math. 64, 450–455 (2001).MathSciNetMATHGoogle Scholar
  2. 2.
    J. P. Benzecri, L’analyse des données: la taxonomie, Vol. 1 (Dunod, Paris, 1980).Google Scholar
  3. 3.
    P. E. Bradley, “On p-adic classification,” p-Adic Numbers Ultrametric Anal. Appl. 1 (4), 271–285 (2009).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    P. E. Bradley, “Mumford dendrograms,” Computer J. 53 (4), 393–404 (2010).CrossRefGoogle Scholar
  5. 5.
    P. E. Bradley, “An ultrametric interpretation of building related event data,” Constr. Manag. Econ. 28 (3), 311–326 (2010).CrossRefGoogle Scholar
  6. 6.
    P. E. Bradley and A. C. Braun, “Finding the asymptotically optimal Baire distance for multi-channel data,” Appl.Math. 6(3), 484–495 (2015).CrossRefGoogle Scholar
  7. 7.
    G. Carlsson, “Topology and data,” Bull. AMS 46 (2), 255–308 (2009).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    J. W. Moon and L. Moser, “On cliques in graphs,” Isr._J. Math. 3 (1), 23–28 (1965).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    F. Murtagh, “On ultrametricity, data coding, and computation,” J. Class. 21, 167–184 (2004).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    F. Murtagh, “The remarkable simplicity of very high dimensional data: application of model-based clustering,” J. Class. 26, 249–277 (2009).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    R. Rammal, J. C. Angles d’Auriac and B. Doucot, “On the degree of ultrametricity,” J. Phys. Lett. 46, L-945–L-952 (1985).Google Scholar
  12. 12.
    C. J. van Rijsbergen, “A clustering algorithm,” Computer J. 13 (1), 113–115 (1970).Google Scholar
  13. 13.
    L. Vietoris, “Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen,” Math. Ann. 97 (1), 454–472 (1927).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    A. Zomorodian, “Fast construction of the Vietoris-Rips complex,” Comp. & Graph. 34 (3), 263–271 (2010).CrossRefGoogle Scholar
  15. 15.
    A. P. Zubarev, “On stochastic generation of ultrametrics in high-dimensional Euclidean spaces,” p-Adic Numbers Ultrametric Anal. Appl. 6 (2), 155–165 (2014).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Karlsruhe Institute of Technology (KIT)Institute of Photogrammetry and Remote Sensing (IPF)KarlsruheGermany

Personalised recommendations