Functional stochastic classical mechanics

Research Articles


The time irreversibility problem is the dichotomy of the reversible microscopic dynamics and the irreversible macroscopic physics. This problem was considered by Boltzmann, Poincaré, Bogolyubov and many other authors and though some researchers claim that the problem is solved, it deserves a further study. In this paper an attempt is performed of the following solution of the irreversibility problem: a formulation of microscopic dynamics is suggested which is irreversible in time. In this way the contradiction between the reversibility of microscopic dynamics and irreversibility of macroscopic dynamics is avoided since both dynamics in the proposed approach are irreversible. A widely used notion of microscopic state of the system at a given moment of time as a point in the phase space and also a notion of trajectory and microscopic equation of motion does not have an immediate physical meaning since arbitrary real numbers are non observable. In the approach presented in this paper the physical meaning is attributed not to an individual trajectory but only to a bunch of trajectories or to the distribution function on the phase space. The fundamental equation of the microscopic dynamics in the proposed “functional” stochastic classical mechanics is not the Newton equation but the Liouville or Fokker-Planck-Kolmogorov equation for the distribution function of the single particle. Solutions of the Liouville equation have the property of delocalization which accounts for irreversibility. It is shown that the Newton equation in this approach appears as an approximate equation describing the dynamics of the average values of the position and momenta for not too long time intervals. Corrections to the Newton equation are computed.

Key words

time irreversibility functional formulation of classical mechanics Liouville equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Boltzmann, Lectures on Gas Theory (Univ. California Press, Berkeley, CA, 1964).Google Scholar
  2. 2.
    A. Poincaré, “Le mecanisme et l’experience”, Revue de Metaphysique et de Morale 1, 534–537 (1893); English translation, Stephen Brush, Kinetic Theory, 2, p.203.Google Scholar
  3. 3.
    N. N. Bogolyubov, Problems of Dynamic Theory in Statistical Physics (OGIZ, 1946) [in Russian].Google Scholar
  4. 4.
    N. S. Krylov,Works on the Foundations of Statistical Physics (Akad. Nauk. SSSR, Moscow-Leningrad, 1950) [in Russian].Google Scholar
  5. 5.
    L. D. Landau and E.M. Lifshitz, Statistical Physics, part 1 (3 ed., Pergamon, 1980).Google Scholar
  6. 6.
    G. V. Chester, “The theory of irreversible processes,” Rep. Progr. Phys. 26(1), 411–472 (1963).CrossRefGoogle Scholar
  7. 7.
    M. Kac, Probability and Related Topics in Physical Sciences (JohnWiley, New York, 1959).MATHGoogle Scholar
  8. 8.
    D. N. Zubarev, Nonequilibrium Statistical Thermodynamics (Consultants Bureau, New York, 1974).Google Scholar
  9. 9.
    M. Ohya, “Some aspects of quantum information theory and their applications to irreversible processes” Rep. Math. Phys. 27, 19–47 (1989).CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    I. Prigogine, Les Lois du Chaos (Flammarion, Paris, 1994).Google Scholar
  11. 11.
    V. V. Kozlov, Temperature Equilibrium on Gibbs and Poincaré (Moscow-Ijevsk, 2002) [in Russian].Google Scholar
  12. 12.
    V. V. Kozlov, Gibbs Ensembles and Nonequilibrium Statistical Mechanics (Moscow-Ijevsk, 2008).Google Scholar
  13. 13.
    L. Accardi, Y. G. Lu and I. V. Volovich, Quantum Theory and Its Stochastic Limit (Springer, Berlin, 2002).CrossRefMATHGoogle Scholar
  14. 14.
    V. L. Ginzburg, “Which problems in physics are most important and interesting in the beginning of XXI century?” In: V. L. Ginzburg, On Science, on Myself and Others, pp. 11–74, (Fizmatlit, 2003) [in Russian].Google Scholar
  15. 15.
    G. Gallavotti, “Fluctuation relation, fluctuation theorem, thermostats and entropy creation in non equilibrium statistical physics,” [arXiv:cond-mat/0612061] (2006).Google Scholar
  16. 16.
    R. Feynman, The Character of Physical Law, A series of lectures at Cornell University, USA (Cox and Wyman Ltd., London, 1965).Google Scholar
  17. 17.
    J. L. Lebowitz, “From time-symmetric microscopic dynamics to time-asymmetric macroscopic behavior: An overview,” [arXiv:0709.0724] (2007).Google Scholar
  18. 18.
    S. Goldstein, “Boltzmann’s approach to statistical mechanics,” in: J. Bricmont et al. (Eds), Chance in Physics: Foundations and Perspectives, Lecture Notes in Physics 574, pp. 39–68 (Springer, Berlin, 2001).CrossRefGoogle Scholar
  19. 19.
    J. Bricmont, “Science of chaos or chaos in science?” in: The Flight from Science and Reason, Annals N.Y. Acad. Sci. 775, 131–182 (1996).MathSciNetGoogle Scholar
  20. 20.
    A. N. Kolmogorov, “The general theory of dynamical systems and classical mechanics,” Proc. Int. Congress of Mathematicians (Amsterdam, 1954), 1, 315–333 (North Holland, Amsterdam, 1957) [inRussian]. English translation as Appendix D in R.H. Abraham, Foundations of Mechanics, pp. 263–279 (Benjamin, 1967). Reprinted as Appendix in R.H. Abraham and J.E. Marsden, Foundations of Mechanics, Second ed., pp. 741–757 (Benjamin, Cummings 1978).Google Scholar
  21. 21.
    V. I. Arnold, Mathematical Methods of Classical Mechanics (Springer-Verlag, 1978).CrossRefMATHGoogle Scholar
  22. 22.
    B. A. Dubrovin, A. T Fomenko and S. P. Novikov, Modern Geometry: Methods and Applications, GTM 93, Part 1 (Springer-Verlag, 1984).CrossRefGoogle Scholar
  23. 23.
    D. V. Anosov, “Geodesic flows on closed Riemann manifolds with negative curvature,” Proc. Steklov Inst. Math. 90 (1960).Google Scholar
  24. 24.
    Ya. G. Sinai, Introduction to Ergodic Theory (Princeton Univ. Press, Princeton, New Jersey, 1977).Google Scholar
  25. 25.
    L. Boltzmann, Ober die Beziehung eines allgemeine mechanischen Satzes zum zweiten Hauptsatze der Warmetheorie part II, Vienna, part II, 75, 67–73 (Sitzungsberichte Akad. Wiss., Vienna, 1877); English transl.: Stephen Brush, Kinetic Theory 2, p. 188.Google Scholar
  26. 26.
    A. Friedman, “Uber die Krummung des Raumes,” Zeitschrift fur Physik 10(1), 377–386 (1922).CrossRefGoogle Scholar
  27. 27.
    A. D. Linde, Inflation and Quantum Cosmology (Acad. Press, Boston 1990).MATHGoogle Scholar
  28. 28.
    Th. M. Nieuwenhuizen and I. V. Volovich, “Role of various entropies in the black hole information loss problem,” in Beyond the Quantum, eds. Th.M. Nieuwenhuizen, V. Spicka, B. Mehmani, M. J. Aghdami, and A. Yu. Khrennikov (World Scientific, 2007); [arXiv:hep-th/0507272].CrossRefGoogle Scholar
  29. 29.
    H. Poincare, Remarks on the Kinetic Theory of Gases, Selected Works, Vol. 3 (Nauka, Moscow, 1974).Google Scholar
  30. 30.
    H. Poincare, (1904), “L’etat actuel et l’avenir de la physique mathematique,” Bulletin des sciences mathematiques 28(2), 302–324 (1904). English transl. in Poincare, Henri (1904), “The present and the future of mathematical physics,” Bull. Amer.Math. Soc. 37, 25–38 (2000).MATHMathSciNetGoogle Scholar
  31. 31.
    V. V. Kozlov and D. V. Treschev, “Fine-grained and coarse-grained entropy in problems of statistical mechanics,” Theor. Math. Phys. 151(1), 120–137 (2007).CrossRefGoogle Scholar
  32. 32.
    A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems (Cambridge Univ. Press, New York).Google Scholar
  33. 33.
    I.V. Volovich, “Number theory as the ultimate physical theory,” p-Adic Numbers Ultr. Anal. Appl. 2(1), 77–87 (2010); Preprint No. TH 4781/87, CERN, Geneva, 1987.CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    I. V. Volovich, “p-Adic string,” Class. Quant. Grav. 4, L83–L87 (1987).CrossRefMathSciNetGoogle Scholar
  35. 35.
    Yu. I. Manin, “Reflections on arithmetical physics,” in Mathematics as Metaphor: Selected Essays of Yuri I. Manin, pp. 149–155 (Amer. Math. Society, Providence, R.I., 2007).Google Scholar
  36. 36.
    V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-Adic Analysis and Mathematical Physics (World Scientific, Singapore, 1994).CrossRefGoogle Scholar
  37. 37.
    A. Yu. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models (Kluwer Acad. Publishers, Dordreht, 1997).CrossRefMATHGoogle Scholar
  38. 38.
    B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev and I. V. Volovich, “On p-adicmathematical physics,” p-Adic Numbers Ultr. Anal. Appl. 1(1), 1–17 (2009); [arXiv:0904.4205 [math-ph]].CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    V. S. Varadarajan, “Multipliers for the symmetry groups of p-adic spacetime,” p-Adic Numbers Ultr. Anal. Appl. 1(1), 69–78 (2009).CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    E. I. Zelenov, “Quantum approximation theorem,” p-Adic Numbers Ultr. Anal. Appl. 1(1), 88–90 (2009).CrossRefMATHMathSciNetGoogle Scholar
  41. 41.
    I. V. Volovich, “Quantum cryptography in space and Bell’s theorem,” in Foundations of Probability and Physics, pp. 364–372, ed. A. Khrennikov (World Sci., 2001).Google Scholar
  42. 42.
    I. V. Volovich, “Seven principles of quantum mechanics,” [arXiv: quant-ph/0212126] (2002).Google Scholar
  43. 43.
    G.W. Mackey,Mathematical Foundations of Quantum Mechanics (W. A. Benjamin, New York, 1963).Google Scholar
  44. 44.
    L.D. Faddeev and O. A. Yakubovsky, Lectures on Quantum Mechanics for Mathematical Students, 2-nd edition (Moscow, 2001) [in Russian].Google Scholar
  45. 45.
    Yu. L. Klimontovich, Statistical Physics (Moscow, Nauka, 1982) [in Russian].Google Scholar
  46. 46.
    L. D. Landau and E.M. Lifshiz, Fluid Mechanics (Pergamon Press, 1959).Google Scholar
  47. 47.
    S. Flugge, Practical Quantum Mechanics (Springer, 1994).Google Scholar
  48. 48.
    W. P. Schleich, Quantum Optics in Phase Space (Wiley-VCH Verlag, 2001).CrossRefMATHGoogle Scholar
  49. 49.
    E. A. Dynin, “Statistical moments in quantum tunneling,” Soviet Physics, Semiconductors 24(44), 480–481 (1990).Google Scholar
  50. 50.
    I. V. Volovich and A. S. Trushechkin, “On quantum compressed states on interval and uncertainty relation for nanoscopic systems,” Proc. Steklov Math. Inst. 265, 1–31 (2009).CrossRefMathSciNetGoogle Scholar
  51. 51.
    M. Reed and B. Simon, Methods of Modern Mathematical Physics 2 (Academic Press, 1975).Google Scholar
  52. 52.
    V. S. Vladimirov, Equations of Mathematical Physics (Marcel Dekker, New York, 1971).Google Scholar
  53. 53.
    A.N. Pechen and I. V. Volovich, “Quantum multipole noise and generalized quantum stochastic equations,” Infin. Dimen. Anal. Quant. Probab. Rel. Topics 5(4), 441–464 (2002).CrossRefMATHMathSciNetGoogle Scholar
  54. 54.
    V. P. Maslov and M. V. Fedoryuk, Semi-Classical Approximation in Quantum Mechanics (D. Reidel Publ., Dordrecht-Boston-London, 1981).CrossRefMATHGoogle Scholar
  55. 55.
    Yu. V. Prokhorov and Yu. A. Rosanov, Probability Theory (Springer-Verlag, Berlin, 1969).CrossRefMATHGoogle Scholar
  56. 56.
    A. V. Bulinsky and A. N. Shiryaev, Theory of Random Processes (Fizmatlit, Moscow, 2003).Google Scholar
  57. 57.
    A. Yu. Khrennikov, Interpretations of Probability (VSP Int. Publ., Utrecht, 1999).MATHGoogle Scholar
  58. 58.
    M. Ohya and I. Volovich, Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano- and Bio-systems (Springer, 2011).CrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteMoscowRussia

Personalised recommendations