Spectral analysis for finite rank perturbations of diagonal operators in non-archimedean Hilbert space

  • T. Diagana
  • R. Kerby
  • TeyLama H. Miabey
  • F. Ramaroson
Research Articles

Abstract

In this paper we are concerned with the spectral analysis for some classes of finite rank perturbations of diagonal operators in the form, A = D + F, where D is a diagonal operator and F = u1v1 + u2v2 + … + umvm is an operator of finite rank in the non-archimedean Hilbert space \(\mathbb{E}_\omega \). Using the theory of Fredholm operators in the non-archimedean setting and the concept of essential spectrum for linear operators, we compute the spectrum of A. A few examples are given at the end of the paper to illustrate our main results.

Key words

spectral analysis diagonal operator finite rank operator eigenvalue spectrum essential spectrum non-archimedean Hilbert space Fredholm operator completely continuous operators 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Araujo, C. Perez-Garcia and S. Vega, “Preservation of the index of p-adic linear operators under compact perturbations,” Compositio Math. 118, 291–303 (1999).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    S. Basu, T. Diagana and F. Ramaroson, “A p-adic version of Hilbert-Schmidt operators and applications,” J. Anal. Appl. 2(3), 173–188 (2004).MathSciNetMATHGoogle Scholar
  3. 3.
    T. Diagana, “Towards a theory of some unbounded linear operators on p-adic Hilbert spaces and applications,” Ann. Math. Blaise Pascal 12(1), 205–222 (2005).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    T. Diagana, Non-Archimedean Linear Operators and Applications (Nova Science Publ. Inc., Huntington, NY, 2007).MATHGoogle Scholar
  5. 5.
    T. Diagana and G. D. McNeal, “Spectral analysis for rank one perturbations of diagonal operators in non-archimedean Hilbert space,” Comment. Math. Univ. Carolin. 50(3), 385–400 (2009).MathSciNetMATHGoogle Scholar
  6. 6.
    T. Diagana and G. D. McNeal, “Corrigendum to y Spectral analysis for rank one perturbations of diagonal operators in non-archimedean Hilbert spaceΦ,” Comment. Math. Univ. Carolin. 50(4), 637–638 (2009).MathSciNetMATHGoogle Scholar
  7. 7.
    T. Diagana, An Introduction to Classical and p-Adic Theory of Linear Operators and Applications (Nova Science Publ., New York, 2006).MATHGoogle Scholar
  8. 8.
    B. Diarra, “An operator on some ultrametric Hilbert Spaces,” J. Anal. 6, 55–74 (1998).MathSciNetMATHGoogle Scholar
  9. 9.
    B. Diarra, “Geometry of the p-adic Hilbert spaces,” Preprint (1999).Google Scholar
  10. 10.
    B. Diarra, “Bounded linear operators on ultrametric Hilbert spaces,” Afr. Diaspora J. Math. 8(2), 173–181 (2009).MathSciNetMATHGoogle Scholar
  11. 11.
    Q. Fang and J. Xia, “Invariant subspaces for certain finite-rank perturbations of diagonal operators,” J. Func. Anal. 263(5), 1356–1377 (2012).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    C. Fois, I. B. Jung, E. Ko and C. Pearcy, “On rank one perturbations of normal operators,” J. Func. Anal. 253(2), 628–646 (2007).CrossRefGoogle Scholar
  13. 13.
    I. Gohberg, S. Goldberg and M. A. Kaashoek, Basic Classes of Linear Operators (Birkhäuser, 2003).CrossRefMATHGoogle Scholar
  14. 14.
    E. Ionascu, “Rank-one perturbations of diagonal operators,” Integ. Equat. Oper. Th. 39, 421–440 (2001).MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    H. A. Keller and H. Ochsenius, “Bounded operators on non-archimedean orthomodular spaces,” Math. Slovaca 45(4), 413–434 (1995).MathSciNetMATHGoogle Scholar
  16. 16.
    J. Martínez-Maurica, T. Pellon, and C. Perez-Garcia, “Some characterizations of p-adic semi-Fredholm operators,” Ann. Mat. Pura Appl. 156, 243–251 (1990).MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    G. D. McNeal, “Spectral analysis for rank one perturbations of diagonal operators in nonarchimedean Hilbert space,” Howard University (2009).Google Scholar
  18. 18.
    H. Ochsenius and W. H. Schikhof, “Banach spaces over fields with an infinite rank valuation,” in p-Adic Functional Analysis (Poznan, 1998) pp. 233–293 (Dekker, New York, 1999).Google Scholar
  19. 19.
    C. Perez-Garcia and S. Vega, “Perturbation theory of p-adic Fredholm and semi-Fredholm operators,” Indag. Math. (N.S.) 15(1), 115–127 (2004).MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    C. Perez-Garcia, “Semi-Fredholm operators and the Calkin algebra in p-adic analysis I, II,” Bull. Soc. Math. Belg. Sér. B 42(1), 69–101 (1990).MathSciNetMATHGoogle Scholar
  21. 21.
    J. P. Serre, “Completely continuous endomorphisms of p-adic Banach spaces,” Publ. Math. I.H.E.S. No. 12, 69–85 (1962).CrossRefMATHGoogle Scholar
  22. 22.
    S. Śliwa, “On Fredholm operators between non-archimedean Fréchet spaces,” Compos. Math. 139, 113–118 (2003).CrossRefMATHGoogle Scholar
  23. 23.
    A. C. M. van Rooij, Non-Archimedean Functional Analysis (Marcel Dekker Inc, New York, 1978).MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • T. Diagana
    • 1
  • R. Kerby
    • 2
  • TeyLama H. Miabey
    • 1
  • F. Ramaroson
    • 1
  1. 1.Department of MathematicsHoward UniversityWashington, D.C.USA
  2. 2.Department of MathematicsMorgan State UniversityBaltimore, MarylandUSA

Personalised recommendations