Advertisement

Wavelet bases in the Lebesgue spaces on the field of p-adic numbers

  • N. M. ChuongEmail author
  • D. V. Duong
Research Articles

Abstract

In this paper we prove that p-adic wavelets form an unconditional basis in the space L r (ℚ p n ) and give the characterization of the space L r (ℚ p n ) in terms of Fourier coefficients of p-adic wavelets.Moreover, the Greedy bases in the Lebesgue spaces on the field of p-adic numbers are also established.

Keywords

p-adicmultiresolution analysis wavelet bases unconditional basis Greedy basis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Albeverio, S. Evdokimov, M. Skopina, “p-Adic multiresolution analysis and wavelet frames,” J. Fourier Anal. Appl. 16, 693–714 (2010).MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    S. Albeverio, A. Yu. Khrennikov and V. M. Shelkovich, “Harmonic analysis in the p-adic Lizorkin spaces: fractional operators, pseudo-differential equations, p-wavelets, Tauberian theorems,” J. Fourier Anal. Appl. 12, 393–425 (2006).MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    S. Albeverio and S. V. Kozyrev, “Multidimensional basis of p-adic wavelets and representation theory,” p-Adic Numbers Ultram. Anal. Appl. 1(3), 181–189 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    W. Bednorz, “Greedy bases are best for m-term approximation,” Constr. Approx. 28, 265–275 (2008).MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    J. J. Benedeto and R. L. Benedetto, “A wavelet theory for local fields and related groups,” J. Geom. Anal. 3, 423–456 (2004).CrossRefGoogle Scholar
  6. 6.
    N.M. Chuong, Yu. V. Egorov, A. Yu. Khrennikov, Y. Meyer and D. Mumford, Harmonic,Wavelet and p-Adic analysis (World Scientific, 2007).zbMATHCrossRefGoogle Scholar
  7. 7.
    N. M. Chuong, P. G. Ciarlet, P. Lax, D. Mumford and D. H. Phong, Advances in Deterministic and Stochastic Analysis (World Scientific, 2007).zbMATHCrossRefGoogle Scholar
  8. 8.
    N. M. Chuong and N. V. Co, “The multidimensional p-adic Green function,” Proc. Amer. Math. Soc. 127, 685–694 (1999).MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    N. M. Chuong and N. V. Co, “The Cauchy problem for a class of pseudodifferential equations over p-adic field,” J. Math. Anal. Appl. 34, 629–643 (2008).MathSciNetCrossRefGoogle Scholar
  10. 10.
    N.M. Chuong and B. K. Cuong, “Convergence estimates of Galerkin-wavelet solutions to a Cauchy problem for a class of periodic pseudodifferential equations,” Proc. Amer. Math. Soc. 132, 3589–3597 (2004).MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    N.M. Chuong and N. V. Co, “p-Adic pseudodifferential operators and wavelets,” Contemp. Math. 45, 33–45 (2008).CrossRefGoogle Scholar
  12. 12.
    N.M. Chuong and H. D. Hung, “Maximal functions and weighted norm inequalities on local fields,” Appl. Comput. Harmon. Anal. 29, 272–286 (2010).MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    A. Cohen, R. A. DeVore and R. Hochmuth, “Restricted nonlinear approximation,” Constr. Approx. 16, 127–147 (2000).MathSciNetCrossRefGoogle Scholar
  14. 14.
    I. C. Daubechies, Ten Lectures on Wavelets (SIAM, Philadelphia, PA, 1992).zbMATHCrossRefGoogle Scholar
  15. 15.
    G. Garrigos, E. Hermandez and J. M. Martell, “Wavelets, Orlicz spaces, and Greedy bases,” Appl. Comput. Harmon. Anal. 24, 70–93 (2008).MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    L. Grafakos, Classical Fourier Analysis, Second Edition (Springer, 2008).zbMATHGoogle Scholar
  17. 17.
    E. Hernandez and G. Weiss, A First Course on Wavelets (CRC Press, Boca Raton, 1996).zbMATHCrossRefGoogle Scholar
  18. 18.
    R. Hochmith, “Wavelet characterizations for anisotropic Besov spaces,” Appl. Comput. Harmon. Anal. 12, 179–208 (2002).MathSciNetCrossRefGoogle Scholar
  19. 19.
    M. Izuki and Y. Sawano, Greedy bases in weighted modulation spaces, Nonlinear Anal.: Theory, Meth. Appl. 71, 2045–2053 (2009).MathSciNetCrossRefGoogle Scholar
  20. 20.
    M. Izuki and Y. Sawano, “Wavelet bases in the weighted Besov and Triebel-Lizorkin spaces with A ploc—weights,” J. Approx. Theory 161, 656–673 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    S.K. Konyagin and V.N. Temlyakov, “A remark onGreedy approximation in Banach spaces,” East. J.Approx. 5, 365–379 (1999).MathSciNetzbMATHGoogle Scholar
  22. 22.
    A. Khrennikov, p-Adic Valued Distributions in Mathematical Physics (Kluwer Acad. Publishers, Dordrecht-Boston-London, 1994).zbMATHCrossRefGoogle Scholar
  23. 23.
    A. Khrennikov and S. V. Kozyrev, “Wavelets on ultrametric spaces,” Appl. Comput. Harmon. Anal. 19, 61–76 (2005).MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    A. Yu. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models (Kluwer Acad. Publshers, Dordrecht-Boston-London, 1997).zbMATHCrossRefGoogle Scholar
  25. 25.
    A. Yu. Khrennikov, V. M. Shelkovich and M. Skopina, “p-Adic refinable functions and MRA-based wavelets,” J. Approx. Theory 161, 226–238 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    A. Yu. Khrennikov and V. M. Shelkovich, “Non-Haar p-adic wavelets and their application to pseudo-differential operators and equations,” Appl. Comput. Harmon. Anal. 28, 1–23 (2009).MathSciNetCrossRefGoogle Scholar
  27. 27.
    S. V. Kozyrev, “Wavelet analysis as a p-adic spectral analysis,” Izv. Ross. Akad. Nauk Ser.Mat. 66, 149–158 (2002).MathSciNetCrossRefGoogle Scholar
  28. 28.
    S. V. Kozyrev and A. Yu. Khrennikov, “Pseudodifferential operators on ultrametric spaces and ultrametric wavelets,” Izv. Ross. Akad. Nauk Ser.Mat. 69, 133–148 (2005).MathSciNetCrossRefGoogle Scholar
  29. 29.
    S. V. Kozyrev, “Methods and applications of ultrametric and p-adic analysis: From wavelet theory to biophysics,” Proc. Steklov Inst.Math. 274, 1–84 (2011).MathSciNetCrossRefGoogle Scholar
  30. 30.
    W. C. Lang, “Orthogonal wavelets on the Cantor dyadic group,” SIAM J. Math. Anal. 27, 305–312 (1996).MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Y. Meyer,Wavelets and Operators, Advanced Math. (Cambridge Univ. Press, 1992).Google Scholar
  32. 32.
    K. Phillips, “Hilbert transforms for the p-adic and p-series fields,” Pacific J.Math. 23, 329–347 (1967).MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    E. M. Stein, Harmonic Analysis, Real-Variable Methods, Orthogonality, and Oscillatory integrals (Princeton Univ. Press, 1993).zbMATHGoogle Scholar
  34. 34.
    V. M. Shelkovich and M. Skopina, “p-Adic Haar multiresolution analysis and pseudodifferential operators,” J. Fourier Anal. Appl. 15, 366–393 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    M. Taibleson, Fourier Analysis on Local Fields (Princeton Univ. Press, Princeton, 1975).zbMATHGoogle Scholar
  36. 36.
    V. N. Temlyakov, “The best m-approximation and greedy algorithms,” Advan. Comp. Math. 8, 249–265 (1998).MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    V. N. Temlyakov, Greedy Approximation (Cambridge Univ. Press, Cambridge, 2011).zbMATHCrossRefGoogle Scholar
  38. 38.
    V. S. Vladimirov and I. V. Volovich, “p-Adic quantum mechanics,” Comm. Math. Phys. 123, 659–676 (1989).MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-Adic Analysis and Mathematical Physis (World Scientific, Singapore, 1994).CrossRefGoogle Scholar
  40. 40.
    P. Wojtaszczyk, A Mathematical Introduction to Wavelets (Cambridge Univ. Press, Cambridge, 1997).zbMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Institute of MathematicsVietnamese Academy of Science and TechnologyHanoiVietnam
  2. 2.Central University of ConstructionPhuyenVietnam

Personalised recommendations