On countable unions of nonmeager sets in hereditarily Lindelöf spaces

  • Vitalij A. Chatyrko
Research Articles


It is well known that any Vitali set on the real line ℝ does not possess the Baire property. The same is valid for finite unions of Vitali sets. What can be said about infinite unions of Vitali sets? Let S be a Vitali set, S r be the image of S under the translation of ℝ by a rational number r and F = {S r : r is rational}. We prove that for each non-empty proper subfamily F′ of F the union ∪F′ does not possess the Baire property. We say that a subset A of ℝ possesses Vitali property if there exist a non-empty open set O and a meager set M such that AO \ M. Then we characterize those non-empty proper subfamilies F′ of F which unions ∪F′ possess the Vitali property.

Key words

Vitali set Baire property Vitali property 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Engelking, General Topology (Heldermann Verlag, Berlin, 1989).MATHGoogle Scholar
  2. 2.
    A. B. Kharazishvili, Nonmeasurable Sets and Functions (Elsevier, Amsterdam, 2004).MATHGoogle Scholar
  3. 3.
    K. Kuratowski, Topology, Vol. 1 (Academic Press, New York and London, 1966).Google Scholar
  4. 4.
    J. C. Morgan II, Point Set Theory (Marcel Dekker, Inc., New York and Basel, 1990).MATHGoogle Scholar
  5. 5.
    G. Vitali, Sul problema della misura dei gruppi di punti di una retta (Bologna, 1905).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Department of MathematicsLinkoping UniversityLinkopingSweden

Personalised recommendations