Contemporary Problems of Ecology

, Volume 11, Issue 7, pp 743–753 | Cite as

Estimation of Linkages between Biometric Indexes of Forests and Pattern of Canopy Spaces on Super-High-Resolution Satellite Images

  • V. M. Zhirin
  • S. V. KnyazevaEmail author
  • S. P. Eidlina


This paper presents the results of studying a promising area related to the remote assessment of canopy spaces in forests by thresholding methods of image segmentation. The study is conducted based on the example of mixed forests in the Losiny Ostrov National Park. The proposed methodological approach to assessing the pattern of forest canopy on super-high (detailed) resolution satellite images is based on an analysis of light and shaded plots of canopy spaces using image-thresholding algorithms.

The pixel count for different brightness thresholds give enough information to estimate a range of biometric indexes, including volume density and average age and height of stands from statistical relationships. The accuracy of estimates is assessed for prescribed deviations and verified against the norms of estimation of corresponding taxation data.

We have found a statistical relationship of forest-canopy morphology indicators with brightness thresholds for shaded plots of canopy spaces and stemwood phytomass in forest ecosystems. Thus, super-high-resolution images may be considered an information basis for estimating the biometric parameters of stands, morphological indicators of forest canopy, and the productivity of forest ecosystems.


canopy spaces forest canopy image-thresholding algorithm super-high-resolution satellite image crown cover threshold biometric parameters of stands 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartalev, S.A. and Breido, M.D., Automated analysis of taxation characteristics of shrub vegetation of the deserts according to remote data sensing, Izv. Vyssh. Uchebn. Zaved., Geod. Aerofotos’emka, 1989, no. 4, pp. 94–102.Google Scholar
  2. Braslavskaya, T.Yu., Gradient analysis of floristic composition and ecological structure of herbal layer in flood-plain forests, Izv. Samar. Nauchn. Tsentra, Ross. Akad. Nauk, 2012, vol. 14, no. 1 (5), pp. 1202–1205.Google Scholar
  3. Breido, M.D., Zhirin, V.M., Bartalev, S.A., and Bakhtinova, E.V., Characteristics of fodder resources of desert pastures according to aerospace data, Issled. Zemli Kosmosa, 1989, no. 3, pp. 66–76.Google Scholar
  4. Culvenor, D.S., TIDA: an algorithm for the delineation of tree crowns in high spatial resolution remotely sensed imagery, Comput. Geosci., 2002, vol. 28, no. 1, pp. 33–44.CrossRefGoogle Scholar
  5. Daliakopoulos, I., Grillakis, G., Koutroulis, A., and Tsanis, I., Tree crown detection on multispectral VHR satellite imagery, Photogramm. Eng. Remote Sens., 2009, vol. 75, no. 10, pp. 1201–1211.CrossRefGoogle Scholar
  6. Evans, B., Lyons, T.J., Barber, P.A., Hardy, G., and Stone, C., Dieback classification modeling using high-resolution digital multispectral imagery and in situ assessments of crown condition, Remote Sens. Lett., 2012, vol. 3, no. 6, pp. 541–550.CrossRefGoogle Scholar
  7. Franklin, S.E., Maudie, A.J., and Lavigne, M.B., Using spatial co-occurrence texture to increase forest structure and species composition classification accuracy, Photogramm. Eng. Remote Sens., 2001, no. 67, pp. 849–855.Google Scholar
  8. Frazer, G., Fournier, R., Trofymow, J., and Hall, R., A comparison of digital and film fisheye photography for analysis of forest canopy structure and gap light transmission, Agric. For. Meteorol., 2001, vol. 109, no. 4, pp. 249–263.CrossRefGoogle Scholar
  9. Immitzer, M., Vuolo, F., and Atzberger, C., First experience with Sentinel-2 data for crop and tree species classifications in central Europe, Remote Sens., 2016, vol. 8, no. 3, pp. 166.CrossRefGoogle Scholar
  10. Karantzalos, K. and Argialas, D., Towards automatic olive trees extraction from aerial and satellite imagery, Int. Arch. Photogramm., Remote Sens. Spatial Inf. Sci., 2004, vol. 35, no. 5, pp. 360–365.Google Scholar
  11. Karantzalos, K. and Argialas, D., Automatic detection and tracking of oil spills in SAR imagery with level set segmentation, Int. J. Remote Sens., 2008, vol. 29, no. 21, pp. 6281–6296.CrossRefGoogle Scholar
  12. Katoh, M., Classifying tree species in a northern mixed forest using high-resolution IKONOS data, J. For. Res., 2004, vol. 9, no. 1, pp. 7–14.CrossRefGoogle Scholar
  13. Kravtsova, V.I., Spatial structure of tundra-taiga ecotone on Putorana Plateau according to high-resolution satellite images, Vestn. Mosk. Univ., Ser. 5: Geogr., 2012, no. 1, pp. 67–74.Google Scholar
  14. Kravtsova, V.I., Features of interpretation of northern forests in ultrahigh resolution satellite images, Contemp. Probl. Ecol., 2012, vol. 5, no. 7, pp. 612–620.CrossRefGoogle Scholar
  15. Kravtsova, V.I. and Loshkareva, A.R., Analysis of northern forest margin according to different-resolution satellite images, Vestn. Mosk. Univ., Ser. 5: Geogr., 2010, no. 6, pp. 49–57.Google Scholar
  16. Kurnaev, S.F., Lesorastitel’noe raionirovanie SSSR (Forest Zonation of USSR), Moscow: Nauka, 1973.Google Scholar
  17. Lertzman, K., Sutherland, G., Inselberg, A., and Saunders S., Canopy gaps and the landscape mosaic in a costal temperate rainforest., Ecology, 1996, vol. 77, no. 4, pp. 1254–1270.CrossRefGoogle Scholar
  18. Lesoustroitel’naya instruktsiya, utverzhdennaya Prikazom Rosleskhoza ot 12 dekabrya 2011 g., no. 516 (Forestry Instruction Approved by the Federal Forestry Agency Order No. 516 of December 12, 2011), Moscow, 2012.Google Scholar
  19. Lukina, N.V., Orlova, M.A., Perminova, I.V., Khusainova, V.S., Vorob’eva, D.N., and Artemkina, N.A., Metabolomics of forest ecosystems: problems and prospects, Lesovedenie, 2016, no. 6, pp. 457–465.Google Scholar
  20. Malahlela, O., Cho, M.A., and Mutanga, O., Mapping canopy gaps in an indigenous subtropical coastal forest using high-resolution Worldview-2 data, Int. J. Remote Sens., 2014, vol. 35, no. 17, pp. 6397–6417.CrossRefGoogle Scholar
  21. Martin, M.E., Newman, S.D., Aber, J.D., and Congalton, R.G., Determining forest species composition using high spectral resolution remote sensing data, Remote Sens. Environ., 1998, no. 65, pp. 249–254.CrossRefGoogle Scholar
  22. Mirin, D.M., Phytocenotic elements of heterogeneity of vegetation cover, Izv. Samar. Nauchn. Tsentra, Ross. Akad. Nauk, 2012, vol. 14, no. 1 (5), pp. 1320–1323.Google Scholar
  23. Nefed’ev, V.V., Zhirin, V.M., Lyameborshai, S.Kh., Shapochkin, M.S., Shatalov, A.V., and Eidlina, S.P., Istoriya i sostoyanie lesov Losinogo ostrova (The History and Conditions of Forests of Losinyi Island), Moscow: Prima-Press-M, 2000.Google Scholar
  24. Nelson, T., Niemann, O., and Wulder, M., Spatial statistical techniques for aggregating point objects extracted from high spatial resolution remotely sensed imagery, J. Geogr. Syst., 2002, vol. 4, no. 4, pp. 423–433.CrossRefGoogle Scholar
  25. Nelson, T., Roots, B., Wilder, M., and Feick, R., Predicting Forest age classes from high spatial resolution remotely sensed imagery using Voronoi polygon aggregation, Geoinformatica, 2004, vol. 8, no. 2, pp. 143–155.CrossRefGoogle Scholar
  26. Novichikhin, A.E. and Tutubalina, O.V., Integration of algorithms for processing the high-resolution satellite images for automated decryption of forest vegetation, in Zemlya iz kosmosa: naibolee effektivnye resheniya (The Earth form Space: Most Effective Solutions), Moscow: Skaneks, 2009, no. 3, pp. 40–42.Google Scholar
  27. Orlova, M.A., Lukina, N.V., and Smirnov, V.E., Selection of samples of forest litter taking to account mosaic structure of forest biogeocenoses, Lesovedenie, 2015, no. 3, pp. 214–221.Google Scholar
  28. Palace, M., Keller, M., Asner, G., Hagen, S., and Braswell, B., Amazon forest structure from IKONOS satellite data and the automated characterization of forest canopy properties, Biotropica, 2008. V 40, no. 2, pp. 141–150.Google Scholar
  29. Pinz, A., Tree isolation and species classification, Proc. Int. Forum on Automated Interpretation of High Spatial Resolution Digital Imagery for Forestry, Victoria, BC: Can. For. Service, Pac. For. Center, 1999, pp. 127–139.Google Scholar
  30. Samoilovich, G.G., Primenenie aerofotos”emki i aviatsii v lesnom khozyaistve (Use of Aerospace Imaging and Aviation in Forestry), Moscow: Lesnaya Prom-st’, 1964.Google Scholar
  31. Smirnova, O.V. and Bobrovskii, M.V., Structural-dynamic organization of forest ecosystems, in Monitoring biologicheskogo raznoobraziya lesov Rossii (Monitoring of Biological Diversity of Russian Forests), Isaev, A.S., Ed., Moscow: Nauka, 2008, pp. 58–70.Google Scholar
  32. Song, C., Estimating tree crown size with spatial information of high-resolution optical remotely sensed imagery, Int. J. Remote Sens., 2007, vol. 28, no. 15, pp. 3305–3322.CrossRefGoogle Scholar
  33. Sukhikh, V.I., Aerokosmicheskie metody v lesnom khozyistve i landshaftnom stroitel’stve: uchebnik (Aerospace Methods in Forestry and Landscape Construction: Tutorial), Yoshkar-Ola: Mariisk. Gos. Tekh. Univ., 2005.Google Scholar
  34. Sukhikh, V.I., Zhirin, V.M., Ziemelis, T.A., and Shatalov, A.V., Use the high-resolution satellite images for forest taxation, Issled. Zemli Kosmosa, 1996, no. 2, pp. 45–56.Google Scholar
  35. Warner, T., Lee, J., and McGraw, J., Delineation and identification of individual trees in the eastern deciduous forest, Proc. Int. Forum on Automated Interpretation of High Spatial Resolution Digital Imagery for Forestry, Victoria, BC: Can. For. Service, Pac. For. Center, 1999, pp. 81–91.Google Scholar
  36. Wulder, M.A., Nieman, K.O., and Goodenough, D.G., Local maximum filtering for the extraction of tree locations and basal area from high spatial resolution imagery, Remote Sens. Environ., 2000, vol. 73, pp. 103–114.CrossRefGoogle Scholar
  37. Zhirin, V.M., Determination of volume density of plain forests by means of super-high resolution satellite images, Materialy VI Vserossiiskoi konferentsii s mezhdunarodnym uchastiem “Aerokosmicheskie metody i geoinformatsionnye tekhnologii v lesovedenii, lesnom khozyaistve i ekologii,” g. Moskva, 20–22 aprelya 2016 g. (Proc. VI All-Russ. Conf. with Int. Participation “Aerospace Methods and GIS Technologies in Forestry and Ecology,” Moscow, April 20–22, 2016), Moscow: Tsentr Probl. Ekol. Produkt., Ross. Akad. Nauk, 2016, pp. 111–113.Google Scholar
  38. Zhirin, V.M., El’man, R.I., and Ageev, V.N., Automated analysis of resources of larch plantations according to aerospace images, in Lesoustroistvo, taksatsiya, aerometody (Forestry, Taxation, and Aerospace Methods), Leningrad: Leningr. Nauchno-Issled. Inst. Lesn. Khoz., 1978, pp. 128–132.Google Scholar
  39. Zhirin, V.M., Knyazeva, S.V., and Eidlina, S.P., The Ecodynamical Study of Forest-forming Process with Space Imagery, Lesovedenie, 2013, no. 5, pp. 76–85.Google Scholar
  40. Zhirin, V.M., Knyazeva, S.V., and Eydlina, S.P., Influence of Forest-Canopy Morphology and Relief on Spectral Characteristics of Taiga Forests, Izv., Atmos. Ocean. Phys., 2017, vol. 53, no. 9, pp. 1019–1028.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. M. Zhirin
    • 1
  • S. V. Knyazeva
    • 1
    Email author
  • S. P. Eidlina
    • 1
  1. 1.Center for Forest Ecology and ProductivityRussian Academy of SciencesMoscowRussia

Personalised recommendations