Contemporary Problems of Ecology

, Volume 11, Issue 7, pp 754–761 | Cite as

Micromosaic Structure of Vegetation and Variability of the Chemical Composition of L Layer of the Litter in Dwarf Shrub–Green Moss Spruce Forests of the Northern Taiga

  • N. A. ArtemkinaEmail author
  • M. A. Orlova
  • N. V. Lukina


A study of relationships between the micromosaic structure of vegetation and the composition of L layer of the litter of automorphous dwarf shrub–green moss spruce forests of the northern taiga has been carried out on the Kola peninsula. The analysis is performed based on the total content of secondary metabolites (phenolic compounds including lignin and tannins), carbon, as well as, nitrogen, and other nutrients in either L layer or senescent photosynthetic organs of dominating plant species forming an active litterfall fraction. The contribution of these species to the phytomass of mosaic components is considered, as is the micromosaic structure of vegetation. A trend in the growth of the content of mineral nutrients, phenols, and condensed tannins in the forest litter has been revealed in the case of an increase in their content in senescent plant organs. The content of lignin and the C/N ratio in the top litter depends less on the lignin concentration in senescent plant organs and may be determined by the conditions of the further plant litter decomposition, including microbiological activity, differences in water and light regimes, etc.


Northern taiga spruce forests plant-litter relationship phenolic compounds lignin tannins nutritional elements 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aerts, R., Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship, Oikos, 1997, vol. 79, pp. 439–449.CrossRefGoogle Scholar
  2. Artemkina, N.A., Specific accumulation of phenolic compounds in Empetrum hermaphroditum Hager. in different ecological conditions, Materialy V Vserossiiskoi konferentsii s mezhdunarodnym uchastiem “Novye dostizheniya v khimii i khimicheskoi tekhnologii rastitel’nogo syr’ya” (Proc. V All-Russ. Conf. with Int. Participation “New Achievements in Chemistry and Chemical Technology of Plant Raw Material Processing”), Bazarnova, N.G. and Markin, V.I., Eds., Barnaul: Altaisk. Gos. Univ., 2012, pp. 499–501.Google Scholar
  3. Artemkina, N.A., Changes in the chemical composition of different plant species depending on their age, Materialy V Vserossiiskoi konferentsii s mezhdunarodnym uchastiem “Novye dostizheniya v khimii i khimicheskoi tekhnologii rastitel’nogo syr’ya” (Proc. V All-Russ. Conf. with Int. Participation “New Achievements in Chemistry and Chemical Technology of Plant Raw Material Processing”), Bazarnova, N.G. and Markin, V.I., Eds., Barnaul: Altaisk. Gos. Univ., 2014, pp. 259–261.Google Scholar
  4. Berg, B., Litter decomposition and organic matter turnover in northern forest soils, For. Ecol. Manage., 2000, vol. 133, pp. 13–22.CrossRefGoogle Scholar
  5. Cheynier, V., Comte, G., Davies, K.M., Lattanzio, V., and Martens, S., Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology, Plant Physiol. Biochem., 2013, vol. 72, pp. 1–20.CrossRefGoogle Scholar
  6. Dixon, R.A. and Paiva, N.L., Stress-induced phenylpropanoid metabolism, Plant Cell, 1995, vol. 7, pp. 1085–1097.CrossRefGoogle Scholar
  7. Fomicheva, O.A., Polyanskaya, L.M., Nikonov, V.V., Lukina, N.V., Orlova, M.A., Isaeva, L.G., and Zvyagintsev, D.G., Population and biomass of soil microorganisms in old-growth primary spruce forests in the Northern taiga, Eurasian Soil Sci., 2006, vol. 39, no. 12, pp. 1323–1331.CrossRefGoogle Scholar
  8. Fortunel, C., Garnier, E., Joffre, R., Kazakou, E., Quested, H., Grigulis, K., Lavorel, S., Ansquer, P., Castro, H., Cruz, P., Dole al, J., Eriksson, O., Freitas, H., Golodets, C., Jouany, C., et al., Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe, Ecology, 2009, vol. 90, no. 3, pp. 598–611.CrossRefGoogle Scholar
  9. Freschet, G.T., Cornwell, W.K., Wardle, D.A., Elumeeva, T.G., Liu, W., Jackson, B.G., Onipchenko, V.G., Soudzilovskaia, N.A., Tao, J., and Cornelissen, J.H.C., Linking litter decomposition of above-and below-ground organs to plant–soil feedbacks worldwide, J. Ecol., 2013, vol. 101, pp. 943–952.CrossRefGoogle Scholar
  10. Garnier, E., Lavorel, S., Ansquer, P., Castro, H., Cruz, P., Dole al, J., Eriksson, O., Fortunel, C., Freitas, H., Golodets, C., Grigulis, K., Jouany, C., Kazakou, E., Kigel, J., Kleyer, M., et al., Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: A standardized methodology and lessons from an application to 11 European sites, Ann. Bot., 2007, vol. 99, pp. 967–985.Google Scholar
  11. Gorbacheva, T.T., Lukina, N.V., and Artemkina, N.A., Dynamics of the content of polyphenols in the decomposing litter in the green-moss spruce forests of the Kola Peninsula, Lesovedenie, 2006, no. 3, pp. 15–23.Google Scholar
  12. Hättenschwiler, S., Tiunov, A.V., and Scheu, S., Biodiversity and litter decomposition in terrestrial ecosystems, Annu. Rev. Ecol. Evol. Syst., 2005, vol. 36, pp. 191–218.CrossRefGoogle Scholar
  13. Kanerva, S., Kitunen, V., Loponen, J., and Smolander, A., Phenolic compounds and terpenes in soil organic horizon layers under silver birch, Norway spruce and Scots pine, Biol. Fertil. Soils, 2008, vol. 44, pp. 547–556.CrossRefGoogle Scholar
  14. Kovalev, I.V. and Kovaleva, N.O., Pool of lignin phenols in the soils of forest ecosystems, Lesovedenie, 2016, no. 2, pp. 148–160.Google Scholar
  15. Kovaleva, N.O. and Kovalev, I.V., Lignin phenols in soils as biomarkers of paleovegetation, Eurasian Soil Sci., 2015, vol. 48, no. 9, pp. 946–958.CrossRefGoogle Scholar
  16. Lang, S.I., Cornelissen, J.H.C., Klahn, T., van Logtestijn, R.S.P., Broekman, R., Schweikert, W., and Aerts, R., An experimental comparison of chemi-cal traits and litter decomposition rates in a diverse range of subarctic bryophyte, lichen and vascular plant species, J. Ecol., 2009, vol. 97, no. 5, pp. 886–900.Google Scholar
  17. Lukina, N.V. and Nikonov, V.V., Biogeokhimicheskie tsikly v lesakh Severa v usloviyakh aerotekhnogennogo zagryazneniya (Biogeochemical Cycles in Northern Soils Under Air Technogenic Pollution), Apatity: Kol’sk. Nauch. Tsentr, Ross. Akad. Nauk, 1996, part 1.Google Scholar
  18. Lukina, N.V. and Nikonov, V.V., Pitatel’nyi rezhim lesov severnoi taigi: prirodnye i tekhnogennye aspekty (Nutritive Regime of Forests of Northern Taiga: Natural and Technogenic Aspects), Apatity: Kol’sk. Nauch. Tsentr, Ross. Akad. Nauk, 1998.Google Scholar
  19. Luzikov, A.V., Trofimov, S.Ya., and Zagoskina, N.V., Relationship between pool of ammonium ions in soils and the content of phenolic compounds in spruce needles by example of virgin landscapes of Central Forest Nature Reserve, Vestn. Mosk. Univ., Ser. 17: Pochvoved., 2005, no. 3, pp. 42–47.Google Scholar
  20. Makkonen, M., Berg, M.P., Handa, I.T., Hättenschwiler, S., van Ruijven, J., van Bodegom, P.M., and Aerts, R., Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient, Ecol. Lett., 2012, vol. 15, pp. 1033–1041.CrossRefGoogle Scholar
  21. Manakov, K.N. and Nikonov, V.V., Biologicheskii krugovorot mineral’nykh elementov i pochvoobrazovanie v el’nikakh Krainego Severa (Biological Cycle of Mineral Elements and Pedogenesis in Spruce Forests of Extreme North), Leningrad: Nauka, 1981.Google Scholar
  22. Orlova, M.A., Elementary unit of forest biogeocenotic cover for the assessment of ecosystem functions of forests, Tr. Karel’sk. Nauch. Tsentra, Ser. Ekol. Issled., 2013, no. 6, pp. 126–132.Google Scholar
  23. Orlova, M.A., Lukina, N.V., Kamaev, I.O., Smirnov, V.E., and Kravchenko, T.V., Mosaic structure of forest biogeocenoses and soil productivity, Lesovedenie, 2011, no. 6, pp. 39–48.Google Scholar
  24. Orlova, M.A., Lukina, N.V., Smirnov, V.E., and Artemkina, N.A., The influence of spruce on acidity and nutrient content in soils of Northern Taiga dwarf shrub–green moss spruce forests, Eurasian Soil Sci., 2016, vol. 49, no. 11, pp. 1276–1287.CrossRefGoogle Scholar
  25. Osono, T. and Takeda, H., Accumulation and release of nitrogen and phosphorus in relation to lignin decomposition in leaf litter of 14 tree species, Ecol. Res., 2004, vol. 19, no. 6, pp. 593–602.CrossRefGoogle Scholar
  26. Ossipova, S., Ossipov, V., Haukioja, E., Loponen, J., and Pihlaja, K., Proanthocyanidins of mountain birch leaves: quantification and properties, Phytochem. Anal., 2001, vol. 12, no. 2, pp. 128–133.CrossRefGoogle Scholar
  27. Rowland, A.P. and Roberts, J.D., Lignin and cellulose fractionation in decomposition studies using acid-detergent fiber methods, Commun. Soil Sci. Plant Anal., 1994, vol. 25, nos. 3–4, pp. 269–277.CrossRefGoogle Scholar
  28. Sundqvist, M.K., Wardle, D.A., Olofsson, E., Giesler, R., and Gundale, M.J., Chemical properties of plant litter in response to elevation: subarctic vegetation challenges phenolic allocation theories, Funct. Ecol., 2012, vol. 26, no. 3, pp. 1090–1099.CrossRefGoogle Scholar
  29. Vorob’eva, L.A., LAdonin, D.V., Lopukhina, O.V., and Rudakova, T.A., Khimicheskii analiz pochv. Voprosy i otvety (Chemical Analysis of Soils: Questions and Answers), Moscow, 2011.Google Scholar
  30. Zhang, D.Q., Hui, D., Luo, Y., and Zhou, G., Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors, J. Plant Ecol., 2008, vol. 1, no. 2, pp. 85–93.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. A. Artemkina
    • 1
    Email author
  • M. A. Orlova
    • 2
  • N. V. Lukina
    • 2
  1. 1.Institute for Problems of Industrial Ecology of the North, Kola Science CenterRussian Academy of SciencesApatityRussia
  2. 2.Center for Ecology and Productivity of ForestsRussian Academy of SciencesMoscowRussia

Personalised recommendations