Advertisement

Contemporary Problems of Ecology

, Volume 11, Issue 6, pp 666–681 | Cite as

How Reliable is the Untrained Eye in the Identification of an Invasive Species? The Case of Alien Bee-Hawking Yellow-Legged Hornet in Iberian Peninsula

  • C. M. de MedeirosEmail author
  • R. E. Hernández-Lambraño
  • J. Á. Sánchez Agudo
Article
  • 33 Downloads

Abstract

Biological invasions cause great damage to native ecosystems, therefore, it is extremely important to take measures to contain the progress of existing invasions and prevent new ones. Here, we used the Species Distribution Models approach to compare two independent datasets for the invasive alien species the Yellow-legged hornet in the Iberian Peninsula. One dataset compiles occurrence records gathered by expert people (e.g. environmental services’ technical staff and researchers); and the other compiles occurrence records gathered by non-expert people (e.g. amateur entomologists, beekeepers). The main aim is to assess the effectiveness and reliability of the dataset managed by non-experts when comparing it to the dataset managed by experts. Our results showed a high degree of concordance and similarity between models. Thus, both datasets would have the same reliability to be used in management strategies for this species.

Keywords

datasets invasive alien species Maxent Species Distribution Models (SDM) Vespa velutina 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adriaens, T., Sutton-Croft, M., Owen, K., Brosens, D., vanValkenburg, J., Kilbey, D., Groom, Q., Ehmig, C., Thürkow, F., van Hende, P., and Schneider, K., Trying to engage the crowd in recording invasive alien species in Europe: experiences from two smartphone applications in northwest Europe, Manage. Biol. Invasions, 2015, vol. 6, no. 2, pp. 215–225. doi 10.3391/mbi.2015.6.2.12Google Scholar
  2. Arca, M., Mougel, F., Guillemaud, T., Dupas, S., Rome, Q., Perrard, A., Muller, F., Fossoud, A., Capdevielle-Dulac, C., Torres-Leguizamon, M., Chen, X.X., Tan, J.L., Jung, C., Villemant, C., Arnold, G., and Silvain, J.F., Reconstructing the invasion and the demographic history of the yellow-legged hornet, Vespa velutina, in Europe, Biol. Invasions, 2015, vol. 17, no. 8, pp. 2357–2371. doi 10.1007/s10530-015-0880-9Google Scholar
  3. ArcGIS Desktop Version 10.0, Redlands: Environ. Sci. Res. Inst., 2010.Google Scholar
  4. Archer, M.E., Taxonomy, distribution and nesting biology of the Vespa bicolor group (Hym., Vespinae), Entomol. Mon. Mag., 1994, vol. 130, pp. 149–158.Google Scholar
  5. Balmori, A. Sobre el riesgo real de una expansión generalizada de la avispa asiática, Vespa velutina Lepeletier, 1836 (Hymenoptera: Vespidae) en la Península Ibérica, Bol. Soc. Entomol. Aragonesa, 2015, vol. 56, pp. 283–289.Google Scholar
  6. Barbet-Massin, M., Rome, Q., Muller, F., Perrard, A., Villemant, C., and Jiguet, F., Climate change increases the risk of invasion by the yellow-legged hornet, Biol. Conserv., 2013, vol. 157, pp. 4–10. doi 10.1016/j.biocon.2012.09.015Google Scholar
  7. Barbet-Massin, M., Rome, Q., Villemant, C., and Courchamp, F., Can species distribution models really predict the expansion of invasive species? PLoS One, 2018, vol. 13, no. 3, pp. 1–14. doi 10.1371/journal.pone.0193085Google Scholar
  8. Beggs, J., Brockerhoff, E., Corley, J., Kenis, M., Masciocchi, M., Muller, F., Rome, Q., and Villemant, C., Ecological effects and management of invasive alien Vespidae, BioControl, 2001, vol. 56, no. 4, pp. 505–526. doi 10.1007/s10526-011-9389-zGoogle Scholar
  9. Benito, B.M., Svenning, J.-C., Kellberg-Nielsen, T., Riede, F., Gil-Romera, G., Mailund, T., Kjaergaard, P.C., and Sandel, B.S., The ecological niche and distribution of Neanderthals during the Last Interglacial, J. Biogeogr., 2017, vol. 44, no. 1, pp. 51–61. doi 10.1111/jbi.12845Google Scholar
  10. Bertolino, S., Lioy, S., Laurino, D., Manino, A., and Porporato, M., Spread of the invasive yellow-legged hornet Vespa velutina (Hymenoptera: Vespidae) in Italy, Appl. Entomol. Zool., 2016, vol. 51, no. 4, pp. 589–597. doi 10.1007/s13355-016-0435-2Google Scholar
  11. Bessa, A.S., Carvalho, J., Gomes, A., and Santarém, F., Climate and land-use drivers of invasion: predicting the expansion of Vespa velutina nigrithorax into the Iberian Peninsula, Insect Conserv. Diversity, 2016, vol. 9, no. 1, pp. 27–37. doi 10.1111/icad.12140Google Scholar
  12. Bonney, R., Cooper, C.B., Dickinson, J., Kelling, S., Phillips, T., Rosenberg, K.V., and Shirk, J., Citizen science: a developing tool for expanding science knowledge and scientific literacy, Bioscience, 2009, vol. 59, no. 11, pp. 977–984. doi 10.1525/bio.2009.59.11.9Google Scholar
  13. Bosch, J., Mardones, F., Pérez, A., de la Torre, A., and Muñoz, M.J., A maximum entropy model for predicting wild boar distribution in Spain, Span. J. Agric. Res., 2014, vol. 12, no. 4, pp. 984–999. doi 10.5424/sjar/2014124-5717Google Scholar
  14. Bosso, L., Rebelo, H., Garonna, A.P., and Russo, D., Modeling geographic distribution and detecting conservation gaps in Italy for the threatened beetle Rosalia alpina, J. Nat. Conserv., 2013, vol. 21, no. 2, pp. 72–80. doi 10.1016/j.jnc.2012.10.003Google Scholar
  15. Carpenter, J.M. and Kojima, J., Checklist of the species in the subfamily Vespinae (Insecta: Hymenoptera: Vespidae), Nat. Hist. Bull. Ibaraki Univ., 1997, vol. 1, pp. 51–92.Google Scholar
  16. Castro, L. and Pagola-Carte, S., Vespa velutina Lepeletier, 1836 (Hymenoptera: Vespidae), recolectada en la Península Ibérica, Heteropterus Rev. Entomol., 2010, vol. 10, no. 2, pp. 193–196.Google Scholar
  17. Chapman, D.S., Weak climatic associations among British plant distributions, Global Ecol. Biogeogr., 2010, vol. 19, no. 6, pp. 831–841. doi 10.1111/j.1466-8238.2010.00561.xGoogle Scholar
  18. de Haro, L., Labadie, M., Chanseau, P., Cabot, C., Blanc-Brisset, I., and Penouil, F., Medical consequences of the Asian black hornet (Vespa velutina) invasion in southwestern France, Toxicon, 2010, vol. 55, pp. 650–652. doi 10.1016/j.toxicon.2009.08.005Google Scholar
  19. Demichelis, S., Manino, A., Minuto, G., Mariotti, M., and Porporato, M., Social wasp trapping in north west italy: comparison of different bait-traps and first detection of Vespa velutina, Bull. Insectol., 2014, vol. 67, no. 2, pp. 307–317.Google Scholar
  20. Dhillon, S.K. and Sidhu, A.S., Data Intensive Computing for Biodiversity, Computational Intelligence and Complexity Series, Berlin: Springer-Verlag, 2013.Google Scholar
  21. Domíguez-Vega, H., Monroy-Vilchis, O., and Balderas-Valdivia, C.J., Predicting the potential distribution of the beaded lizard and identification of priority areas for conservation, J. Nat. Conserv., 2012, vol. 20, no. 4, pp. 247–253. doi 10.1016/j.jnc.2012.04.003Google Scholar
  22. Edwards, R., Social Wasps: Their Biology and Control, East Grinstead: Rentokil, 1980.Google Scholar
  23. Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E., and Yates, C.J., A statistical explanation of MaxEnt for ecologists, Diversity Distrib., 2010, vol. 17, no. 1, pp. 1–15. doi 10.1111/j.1472-4642.2010.00725.xGoogle Scholar
  24. European Environment Agency Corine Land Cover 2006—version 17 (12/2013). www.eea.europa.eu/data-andmaps/data/corine-land-cover-2006-raster-3. Accessed January 27, 2016.
  25. Fagan, W.F. and Kareiva, P.M., Comparisons among regions: a test case using Oregon butterflies, Biol. Conserv., 1997, vol. 80, no. 3, pp. 249–259. doi 10.1016/s0006-3207(96)00144-9Google Scholar
  26. Fielding, A.H. and Bell, J.F., A review of methods for the assessment of prediction errors in conservation presence/absence models, Environ. Conserv., 1997, vol. 24, no. 1, pp. 38–49. doi 10.1017/s0376892997000088Google Scholar
  27. Franklin, D.N., Brown, M.A., Datta, S., Cuthbertson, A.G.S., Budge, G.E., and Keeling, M.J., Invasion dynamics of Asian hornet, Vespa velutina (Hymenoptera: Vespidae): a case study of a commune in south-west France, Appl. Entomol. Zool., 2017, vol. 52, no. 2, pp. 221–229. doi 10.1007/s13355-016-0470-zGoogle Scholar
  28. Godown, M.E. and Peterson, A.T., Preliminary distributional analysis of US endangered bird species, Biodivers. Conserv., 2000, vol. 9, no. 9, pp. 1313–1322. doi 10.1023/A:1008924322405Google Scholar
  29. Goodchild, M.F., Citizens as sensors: The world of volunteered geography, GeoJournal, 2007, vol. 69, no. 4, pp. 211–221. doi 10.1007/s10708-007-9111-yGoogle Scholar
  30. Grosso-Silva, J.M. and Maia, M., Vespa velutina Lepeletier, 1836 (Hymenoptera, Vespidae), new species for Portugal, Arq. Entomolóxicos, 2012, no. 6, pp. 53–54.Google Scholar
  31. Guisan, A. and Zimmermann, N.E., Predictive habitat distribution models in ecology, Ecol. Model., 2000, vol. 135, nos. 2–3, pp. 147–186. doi 10.1016/S0304-3800(00)00354-9Google Scholar
  32. Guisan, A., Tingley, R., Baumgartner, J.B., Naujokaitis-Lewis, I., Sutcliffe, P.R., Tulloch, A.I.T., Regan, T.J., Brotons, L., Mcdonald-Madden, E., Mantyka-Pringle, C., Martin, T.G., Rhodes, J.R., Maggini, R., Setterfield, S.A., Elith, J., et al., Predicting species distributions for conservation decisions, Ecol. Lett., 2013, vol. 16, no. 12, pp. 1424–1435. doi 10.1111/ele.12189Google Scholar
  33. Heiberger, R.M., HH: statistical analysis and data display: Heiberger and Holland, R package version 3.1-34. https://doi.org/cran.r-project.org/package=HH.
  34. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., and Jarvis, A., Very high resolution interpolated climate surfaces for global land areas, Int. J. Climatol., 2005, vol. 25, no. 15, pp. 1965–1978. doi 10.1002/joc.1276Google Scholar
  35. Hooper, D.U., Chapin, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J.H., Lodge, D.M., Loreau, M., Naeem, S., Schmid, B., Setälä, H., Symstad, A.J., Vandermeer, J., and Wardle, D.A., Effects of biodiversity on ecosystem functioning: a consensus of current knowledge, Ecol. Monogr., 2005, vol. 75, no. 1, pp. 3–35. doi 10.1890/04-0922Google Scholar
  36. Ibáñez-Justicia, A. and Loomans, A.J.M. Mapping the potential occurrence of an invasive species by using CLIMEX: case of the Asian hornet (Vespa velutina nigrithorax) in The Netherlands, Proc. Netherlands Entomological Society Meeting, Leiden, 2011, vol. 22, pp. 39–46Google Scholar
  37. IUCN, IUCN Guidelines for the Prevention of Biodiversity Loss Caused by Alien Invasive Species, Auckland: Invasive Species Specialist Group, 2000.Google Scholar
  38. Jarvis, A., Reuter, H., Nelson, A., and Guevara, E., Holefilled SRTM for the globe, Version 4. https://srtm.csi.cgiar.org/. Accessed June 20, 2012.
  39. Jiao, S., Zeng, Q., Sun, G., and Lei, G., Improving conservation of cranes by modeling potential wintering distributions in China, J. Resour. Ecol., 2016, vol. 7, no. 1, pp. 44–50. doi 10.5814/j.issn.1674-764x.2016.01.006Google Scholar
  40. Jiménez-Valverde, A., Lira-Noriega, A., Peterson, A.T., and Soberón, J., Marshalling existing biodiversity data to evaluate biodiversity status and trends in planning exercises, Ecol. Res., 2010, vol. 25, no. 5, pp. 947–957. doi 10.1007/s11284-010-0753-8Google Scholar
  41. Kadoya, T. and Washitani, I., An adaptive management scheme for wetland restoration incorporating participatory monitoring into scientific predictions using dragonflies as an indicator taxon, Global Environ. Res., 2007, vol. 11, no. 2, pp. 179–185.Google Scholar
  42. Kadoya, T., Ishii, H.S., Kikuchi, R., Suda, S.I., and Washitani, I., Using monitoring data gathered by volunteers to predict the potential distribution of the invasive alien bumblebee Bombus terrestris, Biol. Conserv., 2009, vol. 142, no. 5, pp. 1011–1017. doi 10.1016/j.biocon.2009.01.012Google Scholar
  43. Keeling, M.J., Franklin, D.N., Datta, S., Brown, M.A., and Budge, G.E., Predicting the spread of the Asian hornet (Vespa velutina) following its incursion into Great Britain, Sci. Rep., 2017, vol. 7, no. 1, p. 6240. doi 10.1038/s41598-017-06212-0Google Scholar
  44. Kim, J.-K., Choi, M., and Moon, T.-Y., Occurrence of Vespa velutina Lepeletier from Korea, and a revised key for Korean Vespa species (Hymenoptera: Vespidae), Entomol. Res., 2006, vol. 36, no. 2, pp. 112–115. doi 10.1111/j.1748-5967.2006.00018.xGoogle Scholar
  45. Kriticos, D.J., Sutherst, R.W., Brown, J.R., Adkins, S.W., and Maywald, G.F., Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp. indica in Australia, J. Appl. Ecol., 2003, vol. 40, no. 1, pp. 111–124. doi 10.1046/j.1365-2664.2003.00777.xGoogle Scholar
  46. Kumar, S., Neven, L.G., Zhu, H., and Zhang, R., Assessing the global risk of establishment of Cydia pomonella (Lepidoptera: Tortricidae) using CLIMEX and Max- Ent niche models, J. Econ. Entomol., 2015, vol. 108, no. 4. doi 10.1093/jee/tov166Google Scholar
  47. Last of the Wild Project, Version 2, 2005 (LWP-2): Global Human Footprint Dataset (Geographic), Palisades, NY: NASA Socioecon. Data Appl. Center, 2005. https://doi.org/dx.doi.org/10.7927/H4M61H5F.10.7927/H4M61H5F
  48. Llaneza, L. and Núñez-Quirós, P., Distribution of the Iberian wolf (Canis lupus signatus) in Galicia (NW Spain): concordance between field sampling and questionnaires, Wildl. Biol. Pract., 2009, vol. 5, no. 1, pp. 23–32. doi 10.2461/wbp.2009.5.5Google Scholar
  49. López, S., González, M., and Goldarazena, A., Vespa velutina Lepeletier, 1836 (Hymenoptera: Vespidae): first records in Iberian Peninsula, EPPO Bull., 2011, vol. 41, no. 3, pp. 439–441. doi 10.1111/j.1365-2338.2011.02513.xGoogle Scholar
  50. Mack, R.N., Simberloff, D., Mark Lonsdale, W., Evans, H., Clout, M., and Bazzaz, F.A., Biotic invasions: causes, epidemiology, global consequences, and control, Ecol. Appl., 2000, vol. 10, no. 3, pp. 689–710. doi 10.1890/1051-0761(2000)010(0689:BICEGC)2.0.CO;2Google Scholar
  51. Martin, S.J., Hornets (Hymenoptera: Vespinae) of Malaysia, Malayan Nat. J., 1995, vol. 49, pp. 71–82Google Scholar
  52. Matsuura, M. and Yamane, S., Biology of the Vespine Wasps, Berlin: Springer-Verlag, 1990.Google Scholar
  53. Moller, H., Lessons for invasion from social insects, Biol. Conserv., 1996, vol. 78, nos. 1–2, pp. 125–142. doi 10.1016/0006-3207(96)00022-5Google Scholar
  54. Monceau, K. and Thiéry, D., Vespa velutina nest distribution at a local scale: an 8-year survey of the invasive honeybee predator, Insect Sci., 2017, vol. 24, no. 4, pp. 663–674. doi 10.1111/1744-7917.12331Google Scholar
  55. Monceau, K., Bonnard, O., and Thiéry, D., Vespa velutina: a new invasive predator of honeybees in Europe, J. Pest Sci., 2014, vol. 87, no. 1, pp. 1–16. doi 10.1007/s10340-013-0537-3Google Scholar
  56. Monceau, K., Maher, N., Bonnard, O., and Thiéry, D., Evaluation of competition between a native and an invasive hornet species: do seasonal phenologies overlap? Bull. Entomol. Res., 2015, vol. 105, no. 4, pp. 462–469. doi 10.1017/S0007485315000280Google Scholar
  57. Parolo, G., Rossi, G., and Ferrarini, A., Toward improved species niche modeling: Arnica montana in the Alps as a case study, J. Appl. Ecol., 2008, vol. 45, no. 5, pp. 1410–1418. doi 10.1111/j.1365-2664.2008.01516.xGoogle Scholar
  58. Perrard, A., Pickett, K., Villemant, C., Kojima, J., and Carpenter, J., Phylogeny of hornets: a total evidence approach (Hymenoptera, Vespidae, Vespinae, Vespa), J. Hymenoptera Res., 2013, vol. 32, pp. 1–15. doi 10.3897/jhr.32.4685Google Scholar
  59. Peterson, A.T., Predicting the geography of species’ invasions via ecological niche modeling, Q. Rev. Biol., 2003, vol. 78, no. 4, pp. 419–433. doi 10.1086/378926Google Scholar
  60. Peterson, A.T. and Vieglais, D.A., Predicting species invasions using ecological niche modelling: new approaches from bioinformatics attack a pressing problem, Bioscience, 2001, vol. 51, no. 5, pp. 363–371. doi 10.1641/0006-3568(2001)051(0363:PSIUEN)2.0.COGoogle Scholar
  61. Phillips, S.J. and Dudík, M., Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation, Ecography, 2008, vol. 31, no. 2, pp. 161–175. doi 10.1111/j.2007.0906-7590.05203.xGoogle Scholar
  62. Phillips, S.J., Dudík, M., and Schapire, R.E., A maximum entropy approach to species distribution modeling, Proc. Twenty-First Int. Conf. on Machine Learning, New York: Assoc. Comput. Mach., 2004, pp. 655–662.Google Scholar
  63. Phillips, S.J., Anderson, R.P., and Schapire, R.E., Maximum entropy modeling of species geographic distributions, Ecol. Model., 2006, vol. 190, nos. 3–4, pp. 231–259. doi 10.1016/j.ecolmodel.2005.03.026Google Scholar
  64. R Development Core Team, R: A Language and Environment for Statistical Computing, Vienna: R Found. Stat. Comput., 2015.Google Scholar
  65. Rebelo, H. and Jones, G., Ground validation of presenceonly modelling with rare species: a case study on barbastelles Barbastella barbastellus (Chiroptera: Vespertilionidae), J. Appl. Ecol., 2010, vol. 47, no. 2, pp. 410–420. doi 10.1111/j.1365-2664.2009.01765.xGoogle Scholar
  66. Robinet, C., Suppo, C., and Darrouzet, E., Rapid spread of the invasive yellow-legged hornet in France: the role of human-mediated dispersal and the effects of control measures, J. Appl. Ecol., 2017, vol. 54, no. 1, pp. 205–215. doi 10.1111/1365-2664.12724Google Scholar
  67. Rome, Q., Dambrine, L., Onate, C., Muller, F., Villemant, C., Garcia-Perez, L., Maia, M., Carvalho Esteves, P., and Bruneau, E., Spread of the invasive hornet Vespa velutina Lepeletier, 1836, in Europe in 2012 (Hym., Vespidae), Bull. Soc. Entomol. Fr., 2013, vol. 118, no. 1, pp. 21–22Google Scholar
  68. Rome, Q., Perrard, A., Muller, F., and Villemant, C., Monitoring and control modalities of a honeybee predator, the yellow-legged hornet Vespa velutina nigrithorax (Hymenoptera: Vespidae), Aliens, 2011, vol. 31, no. 31, pp. 7–15.Google Scholar
  69. Rome, Q., Muller, F., and Villemant, C., Expansion en 2011 de Vespa velutina Lepeletier en Europe (Hym., Vespidae), Bull. Soc. Entomol. Fr., 2012, vol. 117, no. 1, p. 114.Google Scholar
  70. Rome, Q., Muller, F.J., Touret-Alby, A., Darrouzet, E., Perrard, A., and Villemant, C., Caste differentiation and seasonal changes in Vespa velutina (Hym.: Vespidae) colonies in its introduced range, J. Appl. Entomol., 2015, vol. 139, no. 10, pp. 771–782. doi 10.1111/jen.12210Google Scholar
  71. Roy, H.E., Pocock, M.J.O., Preston, C.D., Roy, D.B., Savage, J., Tweddle, J.C., and Robinson, L.D., Understanding Citizen Science and Environmental Monitoring: Final Report on Behalf of UK Environmental Observation Framework, Wallingford, NERC/Centre Ecol. Hydrol., 2012.Google Scholar
  72. Sillero N., Brito, J.C., Skidmore, A.K., and Toxopeus, A.G., Biogeographical patterns derived from remote sensing variables: the amphibians and reptiles of the Iberian Peninsula, Amphibia-Reptilia, 2009, vol. 30, no. 2, pp. 185–206. doi 10.1163/156853809788201207Google Scholar
  73. Teacher, A.G.F., Griffiths, D.J., Hodgson, D.J., and Inger, R., Smartphones in ecology and evolution: a guide for the app-rehensive, Ecol. Evol., 2013, vol. 3, no. 16, pp. 5268–5278. doi 10.1002/ece3.888Google Scholar
  74. Villemant, C., Rome, Q., and Haxaire, J., Le frelon asiatique (Vespa velutina), Muséum National d’Histoire Naturelle, Inventaire national du Patrimoine naturel, Traducción Juli Pujade-Villar, 2010. https://doi.org/inpn.mnhn.fr/fichesEspece/Vespa_velutina_esp.html. Accessed January, 2016.Google Scholar
  75. Villemant, C., Barbet-Massin, M., Perrard, A., Muller, F., Gargominy, O., Jiguet, F., and Rome, Q., Predicting the invasion risk by the alien bee-hawking yellowlegged hornet Vespa velutina nigrithorax across Europe and other continents with niche models, Biol. Conserv., 2011, vol. 144, no. 9, pp. 2142–2150. doi 10.1016/j.biocon.2011.04.009Google Scholar
  76. Warren, D.L., Glor, R.E., and Turelli, M., Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution, Evolution (N.Y.), 2008, vol. 62, no. 11, pp. 2868–2883. doi 10.1111/j.1558-5646.2008.00482.xGoogle Scholar
  77. Warren, D.L., Glor, R.E., and Turelli, M., ENMTools: a toolbox for comparative studies of environmental niche models, Ecography, 2010, vol. 33, no. 3, pp. 607–611. doi 10.1111/j.1600-0587.2009.06142.xGoogle Scholar
  78. Wooten, J.A. and Gibbs, H.L., Niche divergence and lineage diversification among closely related Sistrurus rattlesnakes, J. Evol. Biol., 2012, vol. 25, no. 2, pp. 317–328. doi 10.1111/j.1420-9101.2011.02426.xGoogle Scholar
  79. Zohner, C.M., Benito, B.M., Fridley, J.D., Svenning, J.-C., and Renner, S.S., Spring predictability explains different leaf-out strategies in the woody floras of North America, Europe and East Asia, Ecol. Lett., 2017, vol. 20, no. 4, pp. 452–460. doi 10.1111/ele.12746Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • C. M. de Medeiros
    • 1
    Email author
  • R. E. Hernández-Lambraño
    • 1
  • J. Á. Sánchez Agudo
    • 1
  1. 1.Instituto Hispanoluso de Investigaciones Agrarias (CIALE)Universidad de Salamanca, Campus de Villamayor, VillamayorSalamancaEspaña

Personalised recommendations