Advertisement

Contemporary Problems of Ecology

, Volume 11, Issue 6, pp 543–550 | Cite as

Numerical Modeling of Vertical Distribution of Living and Dead Copepods Arctodiaptomus salinus in Salt Lake Shira

  • A. P. TolomeevEmail author
  • G. Kirillin
  • O. P. Dubovskay
  • Z. F. Buseva
  • M. I. Gladyshev
Article
  • 10 Downloads

Abstract

In deep stratified lakes, the processes of growth and mortality of zooplankton populations result in uneven vertical distributions of living and dead organisms in a water column. The carcasses in the water are removed by sinking, degradation due to microbial decomposition and detritivory, etc. In the case of the epilimnion maximum of zooplankton, provided that the degradation prevails over the sinking, the downward flux of carcasses exponentially decays with depth. This vertical profile of dead organisms, demonstrating the decline in meta- and hypoliminon, can be described by the numerical model presented in this paper. The model approximation of the field data makes it possible to determine non-predator mortality rate m and degradation rate D in relative terms (m/v and D/v, v—sinking velocity) or absolute values (with defined v). For the case of the copepod population of Arctodiaptomus salinus in Lake Shira, the calculated m and D (medians of 0.13 and 0.26 day–1, respectively) were in a good agreement with the literature data. This method also gives the advantage of using the depth-dependent sinking velocity v.

Keywords

zooplankton nonpredatory mortality numerical modeling Arctodiaptomus salinus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bickel, S.L., Tang, K.W., and Grossart, H.-P., Use of aniline blue to distinguish live and dead crustacean zooplankton composition in freshwaters, Freshwater Biol., 2009, vol. 54, pp. 971–981.CrossRefGoogle Scholar
  2. Dubovskaya, O.P., Non-predatory mortality of the crustacean zooplankton, and its possible causes (a review), Zh. Obshch. Biol., 2009, vol. 70, no. 2, pp. 168–192.Google Scholar
  3. Dubovskaya, O.P., Evaluation of abundance of dead crustacean zooplankton in a water body using staining of the samples by aniline blue technique: methodological aspects, Zh. Sib. Fed. Univ., Biol., 2008, vol. 1, no. 2, pp. 145–161.Google Scholar
  4. Dubovskaya, O.P., Gladyshev, M.I., Gubanov, V.G., and Makhutova, O.N., Study of non-consumptive mortality of Crustacean zooplankton in a Siberian reservoir using staining for live/dead sorting and sediment traps, Hydrobiologia, 2003, vol. 504, pp. 223–227.CrossRefGoogle Scholar
  5. Dubovskaya, O.P., Tang, K.W., Gladyshev, M.I., Kirillin, G., Buseva, Z., Kasprzak, P., Tolomeev, A.P., and Grossart, H.-P., Estimating in situ zooplankton nonpredation mortality in an oligo-mesotrophic lake from sediment trap data: caveats and reality check, PLoS One, 2015, vol. 10, p. e0131431. doi 10.1371/journal.pone.0131431CrossRefGoogle Scholar
  6. Dubovskaya, O.P., Tolomeev, A.P., and Buseva, Z.F., The methodology of using sediment traps to study vertical flux and sinking velocities of suspended particles of large size: marine snow, fecal pellets, and zooplankton carcasses (a review), Zh. Sib. Fed. Univ., Biol., 2017, vol. 10, no. 3, pp. 269–300.CrossRefGoogle Scholar
  7. Dubovskaya, O.P., Tolomeev, A.P., Kirillin, G., Buseva, Z., Tang, K.W., and Gladyshev, M.I., Effects of water column processes on the use of sediment traps to measure zooplankton non-predatory mortality: a mathematical and empirical assessment, J. Plankton Res., 2018, vol. 40, pp. 91–106.CrossRefGoogle Scholar
  8. Elliott, D.T., Harris, C.K., and Tang, K.W., Dead in the water: the fate of copepod carcasses in the York River estuary, Virginia, Limnol. Oceanogr., 2010, vol. 55, pp. 1821–1834.CrossRefGoogle Scholar
  9. Gaedke, U., Trophic dynamics in aquatic ecosystems, in Encyclopedia of Inland Waters, London: Academic, 2009, pp. 499–504.CrossRefGoogle Scholar
  10. Gladyshev, M.I. and Gubanov, V.G., Seasonal dynamics of specific mortality of Bosmina longirostris in forest pond determined on the basis of counting of dead individuals, Dokl. Biol. Sci., 1996, vol. 348, nos. 1–6, pp. 244–245.Google Scholar
  11. Gladyshev, M.I., Dubovskaya, O.P., Gubanov, V.G., and Makhutova, O.N., Evaluation of non-predatory mortality of two Daphnia species in a Siberian reservoir, J. Plankton Res., 2003, vol. 25, pp. 999–1003.CrossRefGoogle Scholar
  12. Glebov, N.I., Kochetov, Yu.A., and Plyasunov, A.V., Metody optimizatsii. Uchebnoe posobie (Optimization Methods: Manual), Novosibirsk: Novosib. Gos. Univ., 2000.Google Scholar
  13. Gubanov, M.V., Interspecies interactions of dominant species of Lake Shira biota in laboratory conditions, Cand. Sci. (Biol.) Dissertation, Krasnoyarsk: Sib. Fed. Univ., 2009.Google Scholar
  14. Jimenez-Melero, R., Ramirez, J.M., and Guerrero, F., Seasonal variation in the population growth rate of a dominant zooplankter: what determines its population dynamics? Freshwater Biol., 2013, vol. 58, pp. 1221–1233.CrossRefGoogle Scholar
  15. Jyothibabu, R., Jagadeesan, L., and Lallu, K.R., Copepod carcasses in a tropical estuary during different hydrographical settings, Environ. Monit. Assess., 2016, vol. 188, no. 10, pp. 188–559.CrossRefGoogle Scholar
  16. Kirillin, G., Grossart, H.-P., and Tang, K.W., Modeling sinking rate of zooplankton carcasses: effects of stratification and mixing, Limnol. Oceanogr., 2012, vol. 57, pp. 881–894.CrossRefGoogle Scholar
  17. Levesque, S., Beisner, B.E., and Peres-Neto, P.R., Mesoscale distributions of lake zooplankton reveal spatially and temporally varying trophic cascades, J. Plankton Res., 2010, vol. 32, pp. 1369–1384.CrossRefGoogle Scholar
  18. Rinke, K., Huber, A., Kempke, S., Eder, M., Wolf, T., Probst, W.N., and Rothhaupt, K.O., Lake-wide distributions of temperature, phytoplankton, zooplankton, and fish in the pelagic zone of a large lake, Limnol. Oceanogr., 2009, vol. 54, pp. 1306–1322.CrossRefGoogle Scholar
  19. Stepanov, V.N. and Svetlichnyi, L.S., Issledovaniya gidromekhanicheskikh kharakteristik planktonnykh kopepod (Analysis of Hydromechanical Characteristics of Planktonic Copepods), Kiev: Naukova Dumka, 1981.Google Scholar
  20. Tang, K.W. and Elliott, D.T., Copepod carcasses: occurrence, fate and ecological importance, in Copepods: Diversity, Habitat and Behavior, Seuront, L., Ed., Hauppauge, NY: Nova Science, 2013, pp. 255–278Google Scholar
  21. Tang, K.W., Freund, C.S., and Schweitzer, Ch.L., Occurrence of copepod carcasses in the lower Chesapeake Bay and their decomposition by ambient microbes, Estuarine, Coastal Shelf Sci., 2006, vol. 68, pp. 499–508.CrossRefGoogle Scholar
  22. Tang, K.W., Gladyshev, M.I., Dubovskaya, O.P., Kirillin, G., and Grossart, H.-P., Zooplankton carcasses and nonpredatory mortality in freshwater and inland sea environments, J. Plankton Res., 2014, vol. 36, pp. 597–612.CrossRefGoogle Scholar
  23. Temerova, T.A., Tolomeyev, A.P., and Degermendzhy, A.G., Growth of dominant zooplankton species feeding on plankton microflora in Lake Shira, Aquat. Ecol., 2002, vol. 36, pp. 235–243.CrossRefGoogle Scholar
  24. Toth, L.G., Parpala, L., Balogh, C., Tatrai, I., and Baranyai, E., Zooplankton community response to enhanced turbulence generated by water-level decrease in Lake Balaton, the largest shallow lake in Central Europe, Limnol. Oceanogr., 2011, vol. 56, pp. 2211–2222.CrossRefGoogle Scholar
  25. Yemelyanova, A.Yu., Temerova, T.A., and Degermendzhy, A.G., Distribution of Gammarus lacustris Sars (Amphipoda, Gammaridae) in Lake Shira (Khakasia, Siberia) and laboratory study of its growth characteristics, Aquat. Ecol., 2002, vol. 36, pp. 245–256.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. P. Tolomeev
    • 1
    Email author
  • G. Kirillin
    • 2
  • O. P. Dubovskay
    • 1
    • 3
  • Z. F. Buseva
    • 4
  • M. I. Gladyshev
    • 1
    • 3
  1. 1.Institute of Biophysics, Krasnoyarsk Science Center, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia
  2. 2.Department of EcohydrologyLeibniz-Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
  3. 3.Siberian Federal UniversityKrasnoyarskRussia
  4. 4.Scientific and Practical Center of the National Academy of Science of Belarus for BioresourcesMinskBelarus

Personalised recommendations