Contemporary Problems of Ecology

, Volume 11, Issue 6, pp 652–660 | Cite as

Distribution of Sedimentary Pigments and Macrozoobenthos in the Deepwater Part of the Rybinsk Reservoir

  • N. A. Timofeeva
  • S. N. Perova
  • L. E. Sigareva


The spatial, seasonal, and interannual variability of content of sedimentary pigments and biomass of macrozoobenthos in the Rybinsk Reservoir (Russia) are analyzed on the basis of studies performed in 2009–2015. Specific features of the macrozoobenthos distribution depending on the characteristics of biotopes, including the content of sedimentary pigments, water depth, and water content in bottom sediments and their air-dry volumetric mass, are revealed. Correlation and principal-component analyses revealed a statistically significant positive relationship between the biomass of macrozoobenthos and the sum content of sedimentary chlorophyll a and pheopigments.


chlorophyll pheopigments macrozoobenthos bottom sediments reservoir 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alimov, A.I., Elementy teorii funktsionirovaniya vodnykh ekosistem (Elements of the Theory of Functions of Ecosystems), St. Petersburg: Nauka, 2000.Google Scholar
  2. Bakanov, A.I., Zakonnov, V.V., and Litvinov, A.S., Benthos of Cheboksary Reservoirs: pollution impact and ground monitoring, Biol. Vnutr. Vod, 2006, no. 4, pp. 77–85.Google Scholar
  3. Bezmaternykh, D.M., Effect of anthropogenic pollution on macrozoobenthos structure in Barnaulka River (Upper Ob basin), Water Resour., 2018, vol. 45, no. 1, pp. 89–97.CrossRefGoogle Scholar
  4. Burford, M.A., Long, B.G., and Rothlisberg, P.C., Sedimentary pigments and organic carbon in relation to microalgal and benthic faunal abundance in the Gulf of Carpentaria, Mar. Ecol.: Progr. Ser., 1994, vol. 103, pp. 111–117.CrossRefGoogle Scholar
  5. Cochrane, S.K.J., Denisenko, S.G., Renaud, P.E., Emblow, C.S., Ambrose, W.G., Jr., Ellingsen, I.H., and Skarðhamar, J., Benthic macrofauna and productivity regimes in the Barents Sea: ecological implications in a changing Arctic, J. Sea Res., 2009, vol. 61, no. 4, pp. 222–233.CrossRefGoogle Scholar
  6. Degtyareva, L.V., Spatial distribution of organic matter in bottom sediments of Northern Caspian depending on abiotic and biotic environmental factors, Estestven. Nauki, 2013, no. 2 (43), pp. 49–55.Google Scholar
  7. Dzyuban, A.N., Destruktsiya orgnaicheskogo veshchestva i tsikl metana v donnykh otlozheniyakh vnutrennikh vodoemov (Destruction of Organic Matter and Methane Cycle in Bottom Sediments of Inland Reservoirs), Yaroslavl: Printkhaus, 2010.Google Scholar
  8. Ekologicheskie problemy Verkhnei Volgi (Ecological Problems of Upper Volga River), Yaroslavl: Yarosl. Gos. Tekh. Univ., 2001.Google Scholar
  9. Guilizzoni, P., Bonomi, G., Galanti, G., and Ruggiu, D., Relationship between sedimentary pigments and primary production: evidence from core analyses of twelve Italian lakes, Hydrobiologia, 1983, vol. 103, no. 1, pp. 103–106.CrossRefGoogle Scholar
  10. Heip, C., Basford, D., Craeymeersch, J.A., Dewarumez, J.M., Dörjes, J., de Wilde, P., Duineveld, G., Eleftheriou, A., Herman, P.M.J., Niermann, U., Kingston, P., Künitzer, A., Rachor, E., Rumohr, H., Soetaert, K., and Soltwedel, T., Trends in biomass, density and diversity of North Sea macrofauna, ICES J. Mar. Sci., 1992, vol. 49, no. 1, pp. 13–22.CrossRefGoogle Scholar
  11. Kitaev, S.P., Osnovy limnologii dlya gidrobiologov i ikhtiologov (Fundamentals of Limnology for Hydrobiologists and Ichthyologists), Petrozavodsk: Karel. Nauch. Tsentr, Ross. Akad. Nauk, 2007.Google Scholar
  12. Korneva, L.G., Solov’eva, V.V., and Makarova, O.S., Diversity and dynamics of planktonic algocenosises of reservoirs of Upper and Central Volga (Rybinskoe, Gor’kovskoe, Cheboksarskoe) affected by eutrophication and climate change, Tr. Inst. Biol. Vnutr. Vod, Ross. Akad. Nauk, 2016, no. 76 (79), pp. 35–45.Google Scholar
  13. Lakin, G.F., Biometriya (Biomtery), Moscow: Vysshaya Shkola, 1980.Google Scholar
  14. Leavitt, P.R. and Findlay, D.L., Comparison of fossil pigments with 20 years of phytoplankton data from eutrophic Lake 227, Experimental Lakes Area, Ontario, Can. J. Fish. Aquat. Sci., 1994, vol. 51, no. 10, pp. 2286–2299.CrossRefGoogle Scholar
  15. Litvinov, A.S., Bakanov, A.I., Zakonnov, V.V., and Kochetkova, M.Yu., On relationships between characteristics of benthic communities and some characteristics of their habitat, Water Resour., 2004, vol. 31, no. 5, pp. 565–572.CrossRefGoogle Scholar
  16. Lorenzen, C.J., Determination of chlorophyll and phaeopigments: spectrophotometric equations, Limnol. Oceanogr., 1967, vol. 12, no. 2, pp. 343–346.CrossRefGoogle Scholar
  17. Metodika izucheniya biogeotsenozov vnutrennikh vodoemov (Method for Analysis of Biogeocenosises of Inland Reservoirs), Mordukhai-Boltovskii, F.D., Ed., Moscow: Nauka, 1975.Google Scholar
  18. Mineeva, N.M., Rastitel’nye pigmenty v vode volzhskikh vodokhranilishch (The Plant Pigments in Water of Volga Reservoirs), Moscow: Nauka, 2004.Google Scholar
  19. Monakov, A.V., Pitanie presnovodnykh bespozvonochnykh (Feeding of Freshwater Invertebrates), Moscow: Inst. Probl. Ekol. Evol., Ross. Akad. Nauk, 1998.Google Scholar
  20. Möller, W.A.A. and Scharf, B.W., The content of chlorophyll in the sediment of the volcanic maar lakes in the Eifel region (Germany) as an indicator for eutrophication, in Developments in Hydrobiology, New York: Springer-Verlag, 1986, vol. 143, pp. 327–329.CrossRefGoogle Scholar
  21. Perova, S.N., Taxonomic composition and abundance of macrozoobenthos in the Rybinsk Reservoir at the beginning of the 21st century, Inland Water Biol., 2012, vol. 5, no. 2, pp. 199–207.CrossRefGoogle Scholar
  22. Poddubnaya, T.L., Long-term dynamics of the structure and productivity of bottom communities of Rybinsk Reservoir, in Struktura i funktsionirovanie presnovodnykh ekosistem (The Structure and Functions of Freshwater Ecosystems), Leningrad: Nauka, 1988, pp. 112–140.Google Scholar
  23. Sigareva, L.E. and Timofeeva, N.A., Plant pigments in the Ivankovo Reservoir silts as indicators of destruction processes, Water Resour., 2003, vol. 30, no. 3, pp. 315–324.CrossRefGoogle Scholar
  24. Sigareva, L.E. and Timofeeva, N.A., Sedimentary chlorophyll and pheopigments for monitoring of reservoir characterized by exclusively high dynamism of abiotic conditions, in Chlorophyll: Structure, Production and Medicinal Uses, Le, H. and Salcedo, E., Eds., Hauppauge, NY: Nova Science, 2011, ch. 5, pp. 151–176.Google Scholar
  25. Sigareva, L.E. and Timofeeva, N.A., The phytoplankton role in formation of bottom sediment productivity in a large reservoir in the years with different temperature conditions, in Phytoplankton: Biology, Classification and Environmental Impacts, Sebastiá, M.T., Ed., Hauppauge, NY: Nova Science, 2014, ch. 6, pp. 151–165.Google Scholar
  26. Sigareva, L.E., Zakonnov, V.V., Timofeeva, N.A., and Kas’yanova, V.V., Sediment pigments and silting rate as indicators of the trophic condition of the Rybinsk Reservoir, Water Resour., 2013, vol. 40, no. 1, pp. 54–60.CrossRefGoogle Scholar
  27. Sigareva, L.E., Pyrina, I.L., and Timofeeva, N.A., Interannual dynamics of chlorophyll in plankton and bottom deposits of Rybinsk Reservoir, Tr. Inst. Biol. Vnutr. Vod, Ross. Akad. Nauk, 2016, no. 76 (79), pp. 119–130.Google Scholar
  28. Szymczak-Zyla, M., Krajewska, M., Winogradow, A., Zaborska, A., Breedveld, G.D., and Kowalewska, G., Tracking trends in eutrophication based on pigments in recent coastal sediments, Oceanologia, 2017, vol. 59, no. 1, pp. 1–17.CrossRefGoogle Scholar
  29. Yanygina, L.V., The current state and long-term changes of zoobenthos in the Novosibirsk reservoir, Inland Water Biol., 2011, vol. 4, no. 2, pp. 218–222.CrossRefGoogle Scholar
  30. Zakonnov, V.V. and Poddubnyi, S.A., Structural variations of bottom sediments in the Rybinsk Reservoir, Water Resour., 2002, vol. 29, no. 2, pp. 181–190.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. A. Timofeeva
    • 1
  • S. N. Perova
    • 1
  • L. E. Sigareva
    • 1
  1. 1.Papanin Institute for Biology of Inland WatersRussian Academy of SciencesBorokRussia

Personalised recommendations